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Abstract

Payoff-biased cultural learning has been extensively discussed in the literature on

cultural evolution, but where do payoff currencies come from in the first place? Are

they products of genetic or cultural evolution? Here we present a simulation model to

explore the possibility of novel payoff currencies emerging through a process of theory

construction, where agents come up with “channels” via which different cultural traits

contribute to someultimate payoff and use such “channels” as intermediate payoff cur-

rencies tomake trait-updating decisions.We show that theory-building as a strategy is

mostly favored when the noise associated with the ultimate-level payoff is high, selec-

tive pressures are strong, and the probability of arriving at the right theory is high. This

approach provides insights into both the emergence of payoff currencies and the role

of cognition for causal model building. We close by discussing the implications of our

model for the broader question of causal learning in social contexts.
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Resumen

El aprendizaje cultural sesgado en términos de recompensa ha sido extensivamente

discutido en la literatura de la evolución cultural, ¿pero de dónde vinieron los valores

de compra en primer lugar? ¿Son ellos productos de evolución genética o cultural?

Aquí presentamos un modelo de simulación para explorar la posibilidad de unos val-

ores de recompensa novedosos emergiendo a través de un proceso de construcción

de una teoría, donde los agentes idearon “canales” a través de los cuales caracterís-

ticas culturales diferentes contribuyen a un último pago y usan tales “canales” como

formas de pago intermedio para tomar decisiones de actualización de características.

Mostramos que la construcción de la teoría como una estrategia es en su mayoría

favorecida cuando el ruido asociado con el último nivel de pago es alto, las presiones

selectivas son altas y la probabilidad de llegar a la teoría correcta es alta. Esta aprox-

imación provee conocimiento tanto en la emergencia de medios de pago como en el

rol de la cognición en la construcción demodelos causales. Concluimos discutiendo las

implicaciones de nuestro modelo para la cuestión más amplia del aprendizaje causal

en contextos sociales. [imitación sesgada pagada, construcción de teoría, evolución

cultural]
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INTRODUCTION

Two important and interrelated behavioral features that distinguish humans from other animals are extensive social learning across diverse behav-

ioral domains (Herrmann et al., 2007) and substantial cumulative culture (Dean et al., 2014; Henrich and Tennie, 2017; Tennie, Call, and Tomasello,

2009). To account for the origin and evolution of these features, researchers have pointed to the evolution of various adaptive learning mecha-

nisms (Henrich andMcElreath, 2003; R. Kendal et al., 2018). Crucially, human culture is not only cumulative but also adaptive, in the sense that the

outcomes of evolved learning biases should generally be fitness-enhancing (Richerson and Boyd, 2005).

Adaptive cultural learning requires that individuals acquire traits that on average increase their fitness. This means that processes that do not

involve direct fitness evaluations, such as conformist transmission, which can be adaptive in spatially heterogeneous environments (Henrich and

Boyd, 1998; Nakahashi,Wakano, andHenrich, 2012), andwhen observational errors are common (Henrich and Boyd, 2002), are not going to effec-

tively spread novel adaptive cultural traits by themselves, and can sometimes even lead to population collapse under specific ecological conditions

(Whitehead and Richerson, 2009). However, adaptive cultural evolution occurs when a combination of learning strategies is used, such as: (1) con-

formist learning combined with individual learning (Boyd and Richerson, 1995; Henrich and Boyd, 1998) or payoff-biased learning (Henrich and

Boyd, 2002; Hong, 2022b); (2) “flexible learning” that enables individual learning to bemore accurate or less costly (Boyd and Richerson, 1995); (3)

“critical social learning,” where individuals engage in social learning first, and if results are unsatisfactory, then deploy individual learning (Enquist,

Eriksson, andGhirlanda, 2007); and (4) “specializedhybrid learning,” inwhich individuals deploy asocial learning in somecontexts and social learning

in other contexts (Boyd and Richerson, 1995; Kharratzadeh et al., 2017).

In contrast, purely payoff-biased cultural learning appears to be an attractive and parsimonious strategy because naïve learners can directly

assess the payoff of specific behavioral variants and adopt the ones with higher payoff (Nakahashi, Wakano, and Henrich, 2012; Vale et al., 2017).

However, this raises an important question: How do naïve learners assess payoffs? Most published work has not fully interrogated this problem.

In genetic evolutionary models, payoff is often assumed to be some currency that correlates with genetic fitness (Boyd and Richerson, 1985; J.

Kendal, Giraldeau, and Laland, 2009), and in experimental studies, payoff is often represented by some quantity that individuals with particular

preference and cultural background care about, such as the caloric efficiency of hunting, money, reward tokens (Vale et al., 2017), or food items

(Barrett, McElreath, and Perry, 2017). The more fundamental question is thus: What are the payoff currencies that humans have genetically and

culturally evolved to care about? Food, for example, may be a currency that is evolutionarily significant, but both money and reward tokens are

relatively recent human cultural inventions, and it seems unlikely that we have genetically evolved psychological tendencies to detect and react to

them (Durham, 1991).

A large literature on cultural learning has examined the kinds of cues that learners use to figure out the who, what, and when of cultural learn-

ing, and there are reasons to suspect that some of these reliably emerge over human development and across societies (Chudek et al., 2012).

Researchers have extensively examined model-based cues, such as competence, status (Henrich and Gil-White, 2001; Wood, Kendal, and Flynn,

2013), health, number of children (given age), family size, and physical well-being (Henrich, 2016). The underlying logic is that because these cues

are statistically associated with higher fitness, learners who use these cues to acquire traits socially enjoy a fitness advantage, and therefore the

psychological tendency of attending to these cues was selected for during our evolutionary history. These cues may be rather general, in the sense

that they do not specifywhat traits to adopt, so individuals with high cue values are copied across a broad range of domains. However, such cues are

often enriched by content-specificmechanisms that bias the attention of learners in fitness-relevant domains like food, sex, and gossip (reputation).

The emergence and evolution of more fine-grained, culturally specific currencies, on the other hand, has gathered less attention.

In this article, we use the term “payoff currency” in a rather loosemanner to denote the traits or characteristics that individuals value and use as

proxies tomake learning decisions. For example, hunting returnsmay have been an important payoff currency formuch of our species’ evolutionary

time. Good hunters are typically admired and learned from, and they may benefit from such cultural learning as they accumulate prestige (Hen-

rich and Gil-White, 2001). A notable feature of learning using specific, culturally learned currencies is that learners often need to associate payoff

currencies with particular cultural variants. In other words, naïve individuals need not only evaluate payoffs from potential models but also decide

what traits are relevant for particular payoffs. In the above example, if we are making an arrow with the goal of maximizing hunting return, should

we copy the arrow design from the hunter who hits the target most frequently or the hunter who is the strongest? Alternatively, we could “play it

safe” and copy the arrow design from the hunter who brings the most meat back to camp since hunting return is what we ultimately care about.

Here, in associating aiming accuracy and arrow design, we are effectively constructing causal theories regarding how arrow design contributes to

hunting return and are using aiming accuracy as an intermediate payoff currency to decide what arrow design to copy. Thus, once the causal theory

is in place, individuals can bypass the ultimate payoff (hunting return) and assess the intermediate payoff (aiming accuracy) directly.

An obvious advantage of using intermediate payoff currencies to make learning decisions is that they may be less affected by noise compared

to that in the ultimate payoff. For example, hunting returns in small-scale societies are subject to much uncertainly (Hill and Kintigh, 2009), and

field anthropologists often use specific metrics, such as physical strength and aiming accuracy, to evaluate hunting ability (Stibbard-Hawkes, Atten-

borough, and Marlowe, 2018). However, constructing causal theories and using intermediate payoffs may not always be the best strategy for at

least two reasons. First, constructing causal theories may be cognitively expensive, thus absorbing time and energy resulting in opportunity costs;
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PAYOFF CURRENCYCONSTRUCTION 3

second, humans may not always be able to construct the right causal theory. In reality, figuring out the correct causal model can be difficult. What

leads to hunting success? How does one stay healthy? How did our neighbor have so many children? These are hard problems that individuals may

fail to solve during their lifetime. In fact, one important goal of modern science is to discover the mechanisms of natural and social phenomena

(Hitchcock, 1992), and scientists still have trouble pinpointing the precise causal pathways despite our unprecedented measurement technologies

and sophisticated statistical methods. Therefore, it is useful to explore the conditions under which theory construction and the use of intermediate

payoffs are advantageous. In this article, we aim to address the following questions:

(1) When and how do intermediate payoff currencies arise via a theory-construction process in our efforts to elicit the relationship between

outcomes of interest and relevant cultural variants?

(2) What are the conditions for theory construction to be a superior strategy compared to no theory construction? Once theories are

formulated and transmitted, how do they stand up to individual observations over many trials over time?

To do so, we employ a formal modeling approach. In the following sections, we will describe a computational model, present the simulation

results from two studies, and discuss the evolutionary implications for “theory-building” as a genetically evolved strategy as well as the possibility

of culturally transmitted payoff currencies emerging from the theory-building process.

BASELINE MODEL

Webuild an agent-based simulation tomodel the temporal evolution of some ultimate payoff and the associated culturally transmitted trait values,

with the exact associations specified under different “theory-building” conditions. We also consider “theory-building” as a genetically transmitted

strategy and examine the conditions under which it may be favored by natural selection. Of course, this is not to say that there is no cultural input in

individuals’ propensity to construct theories: likemost human traits, such habit of reasoning about the causal structure of theworld surely requires

some cultural conditioning. Rather, in this exercisewe focus on the genetic component of “theory-building” in order to explore hownatural selection

at the genetic level may have shaped our “theory-building” propensity in the long run.

Life Cycle of Agents

We assume asexual reproduction and nonoverlapping generations, as is commonly done in evolutionary modeling (Boyd and Richerson, 1985; Day

and Bonduriansky, 2011). In each generation, every agent inherits values for x1 and x2 from a parent and samples n individuals in the parental

generation and randomly draws a sample from their parental generation (potential models) and selects the one with the largest relevant payoff

as their model. The learner then compares the model’s payoff with their own payoff: if the model’s payoff is smaller than their own payoff, then

no copying will occur; otherwise (the model’s payoff larger than their own payoff), they will seek to copy the model’s cultural trait, x1 and x2, but

imperfect inference and copy errors will be introduced. Agents will then produce an offspringwith the same x1 and x2 values they acquired through

this process.

Payoff Setup

Suppose F, the “ultimate payoff,” is a genetically evolved payoff currency that individuals use to evaluate and update cultural traits, here captured

by x1 and x2. Why individuals choose to associate x1 and x2 instead of other traits with F has to do with evolved intuition and cultural transmission,

the exploration of which lies beyond the scope of our current effort. In themost general form,

F = f (x1, x2) + 𝜀 (1)

where x1 and x2 represent cultural traits that contributes to payoff F via function f, and 𝜖 represents factors other than x1 and x2 (including intrinsic

stochasticity) that contribute to F. For mathematical convenience, we assume both x1 and x2 can be observed without error, and the 𝜖 is a nor-

mally distributed error term (hereafter referred to as “noise”) with mean 0 and variance 𝜎2. To add some concreteness, assume that humans have a

genetically evolved preference for better hunting returns (i.e., moremeat beats less meat). Here, Fwould be average hunting returns per week (the

amount of food a hunter brings back to camp), x1 would represent arrow length, x2 the time in early morning that a hunter departs, and 𝜀 captures

stochastic, external factors that humans have no control over such as weather. Intuitively, equation (1) could capture how having an arrow closer to

the right arrow length and departing at a time closer to the optimal contribute to hunting success.
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4 AMERICANANTHROPOLOGIST

To further analyze the evolutionary dynamics of the system, we need to specify the function f. Assuming that both x1 and x2contribute1 to F in

the form of a negative quadratic function, equation (1) becomes

F
⏟⏟⏟

hunting

return

= 𝛽1 ⋅ [(a − x1) ⋅ x1]
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

contribution due to

arrow design

+ 𝛽2 ⋅ [(b − x2) ⋅ x2]
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

contribution due to

departure design

+ 𝜀
⏟⏟⏟

externalfactors

(2)

Wechoose thenegativequadratic function inourmodel to capture the intuition that valuesof x1 and x2 thatmaximizeFareoftennot theextreme

values (for example, the best arrow is neither too long nor too short). Here, the 𝛽 coefficients are the relative contribution of different cultural traits

to the ultimate payoff F, whosemaximum value is obtained when x1 =
a

2
and x2 =

b

2
given that both 𝛽1and 𝛽2 are positive. In the simulation, both 𝛽

coefficients as well as are a and b are set to 1 for simplicity, and thus equation (2) can be rewritten as

F = (1 − x1) ⋅ x1 + (1 − x2) ⋅ x2 + 𝜀 (3)

Because themean of 𝜀 is 0, F is maximizedwhen x1 = 0.5 and x2 = 0.5, and themaximal expected value of F is 0.5 ⋅ 0.5 + 0.5 ⋅ 0.5 = 0.5.

Intermediate Payoff as a Result of Causal Theory Construction

Humans are exceptionally good at detecting patterns and identifying correlations (Ayton and Fischer, 2004), even when observed patterns were

produced by a random process (Fyfe et al., 2008). At the individual level, people may discover that arrow length co-varies with some other observ-

able variable—aiming accuracy, which in turn co-varies with hunting return. Similarly, departing time may be discovered to co-vary with number of

prey encounters, which predicts hunting returns as well. It is worth noting the identification of chains of correlations can also be biased by evolved

or transmitted folk intuitions about the causal structure of theworld (Carey, 2009). Regardless of themechanisms, in discovering these intermediate

variables, people effectively construct causal theories on how various cultural traits contribute to ultimate payoff. These intermediate variables

(represented by R and T throughout this article) can then be used as payoff currencies to make trait-adoption decisions: instead of copying x1 and

x2 values from the model with the largest F, naïve individuals adopt x1 and x2 separately from models with high values of respective intermediate

payoffs.We consider three different theory conditions.

No Theory Condition

As previously stated, the “no theory” condition refers to a nondiscriminative copying strategy. There has been both theoretical reasoning (Henrich,

2016) and experimental studies (Derex et al., 2019) showing that explicit theory in the form of causal models is not always necessary for adaptive

cultural evolution. A lot of human cultural know-how and technologies are causally opaque, and people often cannot articulate why they engage

in certain cultural practices that are in fact fitness-enhancing (Henrich and Henrich, 2010; Placek, Madhivanan, and Hagen, 2017). For example,

Henrich and Henrich (2010) found that many Fijian food taboos for pregnant women protect them from marine toxins, yet the locals often fail to

explicitly specify the causal connection. Developmental research also shows that unlike chimpanzees, human children often copy causally irrelevant

actions to achieve tasks in experimental settings (Lyons, Young, and Keil, 2007; Whiten et al., 2009). In our simulation, we model this condition by

having agents update both x1 and x2 based on F. In otherwords, individuals are not assuming how x1 and x2 contribute to F; they simply notice some

individuals possessing higher F values and copy their x1 and x2 values. In the concrete example, people pick the best hunter based on his hunting

return and copy both his arrow design and dietary habits.

Correct Theory Condition

This is the ideal situation, where agents are able to come upwith the causal theory that matches reality exactly. Recall that in our simulation setup

F = (1 − x1) ⋅ x1 + (1 − x2) ⋅ x2 + 𝜀 (4)

which can be rewritten as F = R + T + 𝜖, and the intermediate payoffs are thus R = (1 − x1) ⋅ x1 and T = (1 − x2) ⋅ x2. Individuals will then adopt x1
from models with high intermediate payoff, R, and x2 from models with high intermediate payoff, T. Concretely, this is to say that having correctly
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PAYOFF CURRENCYCONSTRUCTION 5

identified the causal pathways (aiming accuracy and physical strength), people are copying arrow length from the person who aims better and

departure times in the morning from the person who encounters more prey that day. Note that in this way individuals completely bypass the noise

factor 𝜖, because the construction of theory provides more precise guidance regarding what to look for when deciding who to copy.

Incorrect or Incomplete Theory Condition

The constructed causal theory can be wrong (in the sense that it does not match reality) in many ways, and some theories are more wrong than

others as they deviate further from the real causal model. We explore three ways for a causal theory to be wrong: (1) including irrelevant curren-

cies, (2) missing relevant currencies, and (3) misconstructing intermediate payoffs, whichmeans that maximization of intermediate payoff does not

correspond tomaximization of ultimate payoff. Here we discuss three possibilities as follows:

(1) Irrelevant causal currency:

Suppose all agents have an additional cultural trait x3 that doesn’t contribute to F. In addition to adopting x1 and x2 values, agents also adopt x3
from themodel with the highest F at no additional cost. With respect to evolutionary change in x1, x2, and F, this condition is exactly the same as the

“no theory” condition andwill not be explicitlymodeled. Futureworkmay fully explore this situation by including additional factors such as the cost

of copying a particular trait.

(2) Missing relevant currencies:

In this scenario, agents have the right theory regarding x1 (R = (1 − x1) ⋅ x1) but ignore x2 when updating traits. The overall causal model thus

only includes x1, and agents only adopt x1 values frommodels with high values of R. Note that in this situation agents also avoid the noise factor 𝜀,

but not including x2 means Fwill not reach its maximal value and x2 will freely drift around its initial values.

(3) Misconstructing intermediate payoffs:

In our simple model, either intermediate payoff (R or T) may be inaccurately constructed. For simplicity, we only consider themisconstruction of

one intermediate payoff. Suppose the causal model constructed is

F = R′ + T + 𝜀 (5)

where R′ = (a′ − x1) ⋅ x1 and T = (1 − x2) ⋅ x2. Here R′ and T are the respective intermediate payoffs. While agents correctly identify T as one of

the intermediate payoffs, R′ is different from how x1 contribute to F in reality (a′ ≠ 1; in the simulation a′ = 0.6). Relating back to our hunting

example, suppose people think that shooting speed (instead of aiming accuracy) is the channel viawhich arrowdesign contribute to hunting success

and use that as the intermediate payoff. The arrow design that maximizes shooting speed does not necessarily maximize aiming accuracy, and since

aiming accuracy is the realmechanism, using themisconstructed intermediate payoffwill lead to suboptimal arrowdesign and thus reduced hunting

success.

STUDY 1: THE CULTURAL EVOLUTIONARY TRAJECTORY OF TRAIT VALUES

The main results of our simulation are shown in Figure 1, which largely confirm the verbal argument that using intermediate payoffs via theory

construction can significantly speed up adaptive change. In the correct theory condition, both cultural trait values (x1 and x2) reach their optimal

value much faster than in the “no theory” condition, especially when the noise in the ultimate payoff F is large. For example, when the variance 𝜎 of

the error term in F is 1 (most of the variation in F is explained by noise), agents in the “no theory” condition reach the optimal value (0.5 in benchmark

parameter settings) after roughly 300 generations, whereas agents in “right theory” condition reach optimal value in 3 generations—so 100 times

faster.

However, when agents possess inaccurate causal models, we don’t see convergence to the optimal values for x1 and x2. Specifically, when agents

possess an incomplete causalmodel, traits rapidly stabilize at nonoptimal valuesofF. By contrast,whencausalmodels aremissing relevant variables,

cultural traits do not changemuch around their initial value (0.8 for x1, marked in blue) and as a result the population mean payoff F does not reach

its optimum either. Notice that the evolutionary trajectory of the “correct theory” and the two “incorrect theory” conditions are not affected by
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6 AMERICANANTHROPOLOGIST

F IGURE 1 The evolutionary trajectory of two cultural trait values x1 (red line) and x2 (blue line) and the corresponding ultimate payoff F (black
line) in 300 generations across different theory and noise conditions. Agent number (N)= 1000, and sample size n= 5. The starting values are 0.2
for x1(red) and 0.8 for x2 (blue). 𝜎 represents the standard deviation of the normally distributed error term in F. In all simulation runs the optimal x1
and x2 value is 0.5, and themaximum F value is 0.5 as well. [This figure appears in color in the online issue]

F IGURE 2 Unfavorable copying rate in “no theory” condition across different noisemagnitudes at various generations. Unfavorable copying
rate is calculated as the proportion of times an agent copied somemodel’s trait values that yield a lower ultimate payoff F. Plotted rates are
average values of 1000 simulation replications. Agent number (N)= 1000, and sample size n= 5. [This figure appears in color in the online issue]

noise at all, because by construction the noise factor is absent. In reality, intermediate payoff may also be noisy, yet the magnitude of their noise is

likely to bemuch smaller than the overall noise involved in F.

The presence of noisemakes it more likely for individuals to adopt trait values frommodels who appear successful due to chance. As a result, the

trait values that naïve agents adopt can sometimes yield lower ultimate payoffs than their original trait values. Here we refer to instances where

agents adopt trait values that lead to lower ultimate payoffs (in F) as “unfavorable copying.” As shown in Figure 2, in the “no theory” condition, the

magnitude of noise significantly influences unfavorable copying rates, especially in early generations when variation in ultimate payoffs (F) due to

the two cultural traits is substantial. At generation 5, for example, over 40% of agents’ trait-adoption decisions are “mistakes” when noise is high

(𝜎 = 1), compared to less than 1% when noise is low (𝜎 = 0.01). In the “right theory” setting, in contrast, the unfavorable copying rate is 0

because noise is absent (not shown in graph). Unfavorable copying rates in various “wrong theory” conditions depend on how the constructed

theory differs from reality. For example, in the “misconstruction of intermediate payoff” condition the unfavorable copying rate would be 0 for

x2 (as the intermediate payoff for x2 is correctly identified) and roughly 50% for x1 once all the agents’ x1 values reach the “false optimal” at 0.3

(R′ = (0.6 − x1) ⋅ x1).
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PAYOFF CURRENCYCONSTRUCTION 7

TABLE 1 The fixation rate of “no theory” and “theory” strategies in finite populations by 300 generations. Values in cells are the ratio of
proportion of time “theory” strategy reaches fixation over proportion of time “no theory” strategy reaches fixation. Simulation is repeated
500 times, with the initial population consisting of 250 individuals with “theory” strategies and 250 individuals with “no theory” strategies (Agent
number (N)= 500, and sample size n= 5). Note that “strong,” “medium,” and “weak” here refer to the relative contribution of F to the overall fitness.

Baseline Fitness

0 (strong selection) 1 (medium selection) 10 (weak selection)

Magnitude of noise (𝝈) No theory Theory No theory Theory No theory Theory

1 0.02 0.35 0.08 0.21 0.11 0.09

0.1 0.04 0.18 0.07 0.16 0.13 0.12

0.01 0.1 0.16 0.07 0.1 0.09 0.12

Our simulation results show that the average ultimate payoff in the long run is the same for “no theory” and “right theory” conditions in homoge-

nous populations. Sowhen does “right theory” confer additional benefits over “no theory”?We suggest three possibilities. First, human perceptions

are imperfect and can only notice stimulus difference above a certain threshold (Thurstone, 2017), which, when combined with stochasticity in

payoff signals, maymake detection of small technological improvement difficult or impossible.

Second, the “no theory” strategy almost always includes copying irrelevant traits. Though in our simulation this ismodeled as costless, in realistic

settings copying certain traits often incurs some nontrivial cost. For example, copying someone’s clothing choice means one has to spend time and

effort to make/buy new clothes. In principle, themore irrelevant traits one copies, themore cost one pays on average. The “theory” strategy, on the

other hand, does not suffer this cost as much because by constructing theory and intermediate payoffs, individuals can be more precise regarding

what to copy, which oftenmeans copying fewer traits.

Lastly, strategies that enable faster adaptive change may confer an evolutionary advantage in finite populations. Even though the long-term

equilibriumoutcome is the same, individualswith the “correct theory” reach theoptimal trait value faster and thus achievehigher fitnessbefore indi-

vidualswith “no theory.” In this scenario, individual fitness not only dependson their owngenotypebut also thedistributionof culturally transmitted

trait values in the population. When a substantial proportion of the population possesses nonoptimal trait values, individuals with more-efficient

learning strategies may enjoy a relative fitness advantage. This is especially true when population size is small and selective pressure is strong

(ultimate payoff significantly contributes to genetic fitness), because “no theory” individuals may be driven to extinction before they can reach the

same fitness as “correct theory” individuals.

Table 1 shows the fixation rate of the “theory” (assuming individuals possessing “theory” strategies always arrive at the right theory) and “no the-

ory” strategies under different parameter settings in a small, well-mixed2 population. The initial population starts with an equal number of “theory”

and “no theory” individuals, who update their trait values and reproduce according to the life cycle specified in section 2.1. The fitness of individuals

is modeled as the sum of a fixed baseline fitness and the ultimate payoff F. When selection is weak and noise is small, both strategies have roughly

equal chance of fixation, but when selective pressure is strong and noise is substantial, the “theory” strategy is much more likely to reach fixation.

Of course, here we are ignoring the problem of incorrect theories.

STUDY 2: THE CULTURAL TRANSMISSION OF CAUSAL THEORIES AND PAYOFF CURRENCIES

Given the social nature of information flow in human societies, causal theories, once constructed, may be transmitted culturally among individuals

in a community. If some individual in a population comes upwith a theory and starts to use intermediate payoff for trait updating in amore selective

manner and achieves high final ultimate payoff F, other individualsmay notice it and copy their copying strategy. For example, in a populationwhere

everyone employs a “no theory” strategy to copy arrow length and departure time based on hunting return, an individual with the “correct theory”

may standoutbecauseof their higherhunting returns.As a result, their causal theory (in addition to theirmanyother traits)maybecopied, andother

individuals in the community may start to use aiming accuracy as the payoff currency for arrow length and number of prey animals encountered as

the payoff currency for departure time. This process could result in the spread of theories that confer fitness advantages. Wrong theories, on the

other hand, will be selected against as individuals with causal theories that do not match reality will most likely end upwith lower ultimate payoffs.

To explore the evolutionary dynamics of the genetically transmitted strategy of theory construction and the culturally transmitted theories,

we modified our baseline model to simulate this process. For simplicity, we assume that there are two types of genetically transmitted strategies

(“theory constructor” and “non-theory constructor”), and three types of theories (“no theory,” “correct theory,” and “incorrect theory”) that may

be culturally transmitted. Thus, each agent can be represented by a list of four elements: [theory-construction strategy, theory, x1, x2]. In each

generation, theory constructors will attempt to create a theory if they do not have intermediate payoff currencies, with probability p of arriving

at the right theory and 1 − p the incorrect theory. Each naïve agent initially inherits the theory strategy of their parent and will then sample the
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8 AMERICANANTHROPOLOGIST

F IGURE 3 The evolutionary trajectories of various genetically and culturally transmitted strategies. Population size N = 500, number of
models picked n = 5, cost of possessing thewrong theory c = 0.5. The initial frequencies of theory constructor and non-theory constructor in the
population are the same (50%). The probability of theory constructors to arrive at the right theory is denoted by p. [This figure appears in color in
the online issue]

parental generation for cultural models to learn from and compute their payoff according to their theories, as in the baseline model. The difference

is that once the naïve agent has selected their model, they will not only adopt themodel’s trait values but also the theory that themodel possesses.

Importantly, they will pass on this theory regarding what currency to use for evaluating payoffs and selectingmodels that they acquire culturally to

their offspring.

For this setup, note: first, for individuals with the “correct theory” or “incorrect theory” before trait adoption, they will evaluate their models

using the intermediate payoffs by picking twomodels from the sample (one with the largest R, the other with the largest T). After trait updating, we

assume that the focal individual will adopt the theory type of the Rmodel if the model’s R payoff is larger than that of the focal individual, and the

theory typeof theTmodel if themodel’sTpayoff is larger than that of the focal individual. If both theRmodel and theTmodel havehigher respective

payoff, then the focal individualwill adopt eithermodel’s theorywith equal probability (i.e., 50%). In the SupplementalMaterialwe analyze scenarios

where individuals are allowed to revise their theory type and update their trait multiple timeswithin their lifetime (one generation) and the general

patterns (to be discussed below) do not qualitatively change. Secondly, for the sake of simplicity, we define the “incorrect theory” strategy as the

same as “correct theory” strategy but with an additional cost c. This means that while the benefit of possessing the right theory is endogenously

determined, the cost of possessing the wrong theory is fixed and externally imposed.

Figure 3 shows the evolutionary trajectories of the three culturally transmitted theory strategies and the genetically transmitted type “non-

theory constructor” under different parameter combinations. We note the following observations. First, the frequency of non-theory constructor

individuals always increases (see Supplemental Material Figure 2 for additional analysis of different initial non-theory constructor frequencies and

p and 𝜎 values). This is expected because the correct theory is culturally transmitted, whichmeans that the benefit of possessing it can be shared by

both theory constructors andnon-theory constructors, and there is always a cost of attempting to construct a theory (e.g., possibility of constructing

the wrong theory). In a sense, non-theory constructors are “free riders” in that they obtain the correct theory via social learning but do not pay the

cost of constructing theories (cf. Boyd, Richerson, and Henrich’s [2011] discussion of imitation as a form of free riding). Interestingly, these “free

riders” do not always reach fixation: when the magnitude of noise (𝜎) is large, we observe a stable polymorphic equilibrium of theory constructors

and non-theory constructors. This is because possessing the correct theory is especially advantageous when noise is large (as shown previously)

and thus may offset the cost, and theory constructors have higher probabilities of possessing the correct theory, as they will actively construct a

theory when their current theory strategy is “no theory.”

A second observation is that there is an obvious initial increase in the frequency of correct theories in the population, but after a few generations

the frequency starts to decrease and reaches stable levels after∼20 generations. The reason is that in the beginning of the simulation, when x1 and

x2 have not reached their optimal values in the population, the observed payoff difference between different individuals can be quite large, and

those individuals with the correct theory (initially inherited from their parent) aremore likely to obtain x1 and x2 values that are closer to their opti-

mum and obtain higher genetic fitness. Thus, individuals with correct theories aremore likely to produce offspring and alsomore likely to be picked

as cultural models in this initial period. After x1 and x2 have reached their optimal values, however, the advantage conferred by possessing correct

theories diminishes and because there is a cultural component to the transmission of theories (individuals will pick cultural models to update their
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PAYOFF CURRENCYCONSTRUCTION 9

x1, x2 and theory strategies in the social learning phase), there is always some probability that the “no theory” strategy gets copied by individuals

originally with correct theory due to payoff stochasticity. As such, a dynamic equilibrium of the frequency of culturally transmitted correct theory

is reached, as seen in Figure 3.

These results indicate that when the ultimate payoff noise is large, “correct theory” regarding using intermediate payoff currency for trait-

adoption decisions may reach substantial levels through cultural transmission, while the genetically transmitted strategy of theory-constructing

may remain the minority in the population. Notably, the probability of constructing a correct theory needs not be very large; for example, when

p = 0.1 and ff = 1, roughly 70% of the individuals possess the correct theory yet only 10% of the individuals are theory constructors. It is worth

noting that our model assumes that the magnitude of noise and the probability of arriving at the right theory are independent. However, in more

realistic scenarios, theory constructors may actively search for cultural traits that strongly correlate with the ultimate payoff. Their success in find-

ing these traits may be negatively correlatedwith themagnitude of noise in the ultimate payoff, meaning that the probability of arriving at the right

theory decreases as the noise magnitude increases. Future studies may further explore the evolutionary dynamics of this important possibility.

DISCUSSION

Despite the large literatureonpayoff-biased cultural learning, therehasbeen little rigorous theorizing about theorigins and cultural evolutionof the

payoff currencies that humans use to make trait-adoption decisions (for a notable exception, see primary/secondary character distinction in Boyd

and Richerson, 1985). Economics tends to treat payoffs/utilities as exogenously given (Mas-Colell, Whinston, and Green, 1995), and evolutionary

psychologyprimarily focuses ongenetically evolvedpreferences (Cosmides, Tooby, andBarkow, 1995).Here,wepresent thepossibility that humans

may identify correlations between ultimate payoffs and some observed variable to generate “intermediate payoff” via a theory-construction pro-

cess. Our simulation results show that theory construction as a strategy ismost advantageouswhen (1) noise in genetically evolved payoffs is large,

(2) selective pressures are strong, and (3) the probability of arriving at the right theory is large. The primary advantage of the “theory” strategy over

the “no theory” strategy is that by identifying the channels viawhich cultural traits contribute to ultimate payoff F, individualswith “theory” strategy

circumvent the noise associated with F and reach optimal trait values faster.

From a strict optimization perspective, the payoff currency people should use to update trait values is genetic fitness. However, humans cannot

really “see” fitness, and the number of surviving offspring can be a messy measure of fitness due to paternity uncertainty (Buss, 1996; Strassmann

et al., 2012), changing environments, and other noisy factors. Therefore, natural selection may select for psychological mechanisms to enable indi-

viduals to “come up with theories” in which intermediate payoffs become the cues that humans use to make trait-adoption decisions. Of course, as

mentioned previously, there is no guarantee that attempts of theory construction always produce the right theory or even a good theory. At the

population level, although payoff-biased transmission based on genetically evolved preferences would disfavor wrong theories, humans may con-

struct and transmit theories for other reasons, such as content bias (Henrich andMcElreath, 2003): traditional theories of illness (Murdock, 1980)

and principles ofmagic (Hong, 2022a) and divination (Hong andHenrich, 2021)may spread in human societies partly because of their intuitive plau-

sibility. Additionally, constructing the right theory in certain domainsmay be objectively difficult and require cumulative progress; thus, if the initial

construction of theories is more likely to be “wrong,” then it might present a significant barrier for eventually arriving at the right theory. As shown

in our simulation, having the wrong theory is worse than not having any theory at all.

The substantial amount of cultural variation in what people value and pursue suggests that many existing payoff currencies may be culturally

transmitted. Individualsmaynoticewhat other people pay attention toor beexplicitly toldwhat is valuable or desirable, and these culturally evolved

payoff currencies may spread in the population via biased transmission. Therefore, our model accounts for not only the near-universal nondiscrim-

inant copying but also the possibility that populations in different socio-ecological environments may culturally evolve different payoff currencies

that are locally adaptive. Importantly, during cultural evolutionary time, individuals may forget why these payoff currencies are in place, in a way

similar to how the original rationale for rules and norms often get lost in the process of cultural transmission (Chibnik, 1981; Hong, forthcoming).

Our simulation results suggest that “nondiscriminant copying” (“non-theory” strategy) using genetically evolved cues and “specific copying”

(“theory” strategy) using culturally evolved currencies may coexist depending on the characteristics of different domains, such as the strength

of selection (the extent to which “ultimate payoffs” contribute to overall fitness), the intrinsic uncertainty/noise, and the difficulty of coming up

with good theories in various domains. Experimentally, it has been shown that causal understanding is not necessary for technological improve-

ment (Derex et al., 2019), while other work suggests that experimental subjects do possess some causal knowledge inmechanical systems (Osiurak

et al., 2021). More recently, fieldwork among the Hadza reveals that local bow makers often have incomplete causal understanding of their bow

design and mechanical properties, meaning that they possess the correct theories in certain aspects (e.g., how bow thickness affects arrow speed)

but not others (e.g., cross-section shape and energy storage). Crucially, over 80% of the bowmakers reported that their causal theories about bow

design and mechanics were obtained culturally while 10% reported through personal experience (Harris, Boyd, and Wood, 2021). Such patterns

correspond to our simulation results nicely: while causal theories are produced by a few individuals, such theories, once produced, may be cultur-

ally transmitted among individuals and potentially enable adaptive cultural evolution. Finally, we note that individuals in large-scale, industrialized
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10 AMERICANANTHROPOLOGIST

societiesmay have increased use of explicit theories in addition to nondiscriminant copying, possibly due to the specialization of cognitive labor and

increased social complexity (Lutz and Keil, 2002; Kominsky, Zamm, and Keil, 2018).

Although the present article focuses on the evolution of “payoff currencies,” the key logic of our model may be extended to the more general

topic of human causal inference. In a sense, “intermediate payoff currencies” are the products of human individuals trying to understand how var-

ious factors contribute to some (often fitness-relevant) outcomes. Much research in cognitive psychology has shown that causal reasoning is a

fundamental cognitive ability (Pearl, 2000) with deep evolutionary roots (Blaisdell et al., 2006). In particular, human individuals are able to reason

about the causal relationships for a chain of events (e.g., A→B→C) (Shultz, Pardo, and Altmann, 1982), and children as young as four years old are

shown to be able to correctly make causal chain inferences (German and Nichols, 2003). More notably, our causal models of the world often come

from observing and interacting with others (Legare, Sobel, and Callanan, 2017). This means that while the capability to construct causal theories

likely has a strong genetic component (though seeHeyes, 2018), much of our causal learning is socially influenced. In ourmodel, the causal theories

in the form of intermediate payoff currencies are transmitted among individuals, which affects what we value and use as proxies to make learning

decisions; in reality, understanding the causal structures of theworld is such a key task of our cognitive life that we often actively seek causal expla-

nations in addition to passive observations. Much of this line of work focuses on children and while there is some ongoing debate regarding the

role of active teaching in traditional societies (Lancy, 2010; Terashima and Hewlett, 2016), it is a recognized fact that human individuals can and do

obtain important causal knowledge from others, though such knowledge is not necessarily factually correct.3

In our simulation, theory construction has been modeled as a genetically transmitted strategy that can invade or be invaded by mutation. This

type of idealized “one-locus two-alleles” model is quite common in population biology (Karlin and Liberman, 1975), which aims to examine the

evolutionary dynamics of distinct strategies in analytically convenient settings. We wish to point out that the biological reality of causal model

building and causal learning is surely much more complex than on/off control by individual genes, and further studies may utilize more gradualist

assumptions in modeling human cognitive evolution (e.g., via long-term social scaffolding).4

We believemuchmorework is needed to elucidate the origin and evolution of payoff currencies that humans heavily rely upon in both individual

decision-making and social learning settings, as well as the broader question of how causal theories transmit among human individuals and how

they stand up to subsequent observational learning both within developmental and evolutionary time. The present study on culturally evolved and

transmitted payoff currencies would not only expand the current literature on payoff-biased transmission but may also be an important first step

toward amore general account of how humans construct and transmit causal theories and how these theories shape human cognitive evolution.

ORCID

ZeHong https://orcid.org/0000-0002-5343-3008

ENDNOTES
1The formulation here assumes an additive contribution from the two factors to the final outcome, while in some occasions it might make sense to view it

as multiplicative (e.g., the number of predators encountered and tool design). The major difference between f(x1) ⋅ g(x2) and f(x1) + g(x2) is when x1 and x2
change sign or are zero. For example, if f(x1) is negative then g(x2) can be arbitrarily large yet F will always be negative. In our hunting case, we are thinking
that x1 and x2 are always sensibly positive and nonzero, inwhich case if we only consider the factors that contribute to the final outcome (excluding the error

term) and take the logarithm of both sides of the equation F = f(x1) ⋅ g(x2), we get log(F) = log(f(x1)) + log(g(x2)), which is again an additive formation, with

the only difference being the scale of the factor currency units. Therefore, changing from the additive formulation to themultiplicative formulation will not

qualitatively change themodeling results.
2Here, “well-mixed”meanswe assume that any two individuals interactwith the same probability, a common assumption in theoretical ecology and evolution

(Nowak, Tarnita, and Antal, 2010).
3 Importantly, factually incorrect causal understanding of the world could still give rise to adaptive behaviors. Divination, for example, has been suggested to

effectively serve as randomizing devices, which increase hunting returns as hunters decide the directions in which to seek prey (Moore, 1957).
4For instance, seeGodfrey-Smith’s (2020) proposal for a gradualist account of the evolution of human subjective experience andPlaner and Sterelny’s (2021)

account of the evolution of language.
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