
1 
 

Title: Combining Conformist and Payoff Bias in Cultural Evolution: An Integrated Model for 
Human Decision Making 

Author: Ze Hong ab1 

Author Affiliations: 

a Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, 02138, 

Cambridge, MA, United States 

b Department of Sociology, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, 

Zhejiang Province, P.R. China 

1 To whom correspondence should be addressed: ze_hong@g.harvard.edu 

 

 

 

 

 

 

 

 

 

 

 

mailto:ze_hong@g.harvard.edu


2 
 

Combining Conformist and Payoff Bias in Cultural Evolution:  

An Integrated Model for Human Decision Making 

Abstract 
Most existing research on transmission biases in cultural evolution has treated different biases as 

distinct strategies. Here I present a model that combines both frequency dependent bias 

(including conformist bias) and payoff bias in a single decision making calculus, and show that 

such integrated learning strategy may be superior to relying on either bias alone. Natural 

selection may operate on humans’ relative dependence on frequency and payoff information but 

both are likely to contribute to the spread of variants with high payoffs. Importantly, the 

magnitude of conformist bias affects the evolutionary dynamics, and I show that an intermediate 

level of conformity may be most adaptive and may spontaneously evolve as it resists the 

invasion of low-payoff variants yet enables the fixation of high-payoff variants in the population. 

1. Introduction 
Unlike most animals, humans obtain a tremendous amount of information from conspecifics 

which contributes to our ecological dominance (Henrich, 2016; Richerson & Boyd, 2005). The 

transmission of information in human societies has been extensively studied as an evolutionary 

process both theoretically (Boyd & Richerson, 1985; Feldman & Cavalli-Sforza, 1976; Kendal et 

al., 2009) and empirically (Henrich & Henrich, 2010; Mesoudi, 2008). A lot of research has 

focused on transmission biases, the psychological tendencies of individuals to favor specific 

cultural variants rather than others (Henrich & McElreath, 2003). These biases can result in 

evolutionary dynamics that significantly differ from genetic transmission as genetic material can 

only be passed from parents to offspring whereas cultural information can flow through multiple 

transmission channels (from non-parents, peers, etc.) (Creanza et al., 2017).  

Transmission biases often allow for the adaptive evolution of culture (Kendal et al., 2018) 

and may themselves be viewed as having a genetic basis and thus be subject to natural selection 

(Laland, 2004; Mesoudi, 2005). Much effort has been devoted to examining the conditions under 

which various transmission biases evolve (Kendal et al., 2009; Muthukrishna et al., 2016); 

among the proposed biases, conformist bias and payoff bias have received particular attention 
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(Boyd & Richerson, 2009; Denton et al., 2020; McElreath et al., 2008; Whitehead & Richerson, 

2009). In the cultural evolution literature, conformist bias refers to a specific kind of frequency-

dependent copying strategy where individuals adopt the most common cultural variant with 

probability that is higher than its actual frequency in the population (Boyd & Richerson, 1985; 

Henrich & Boyd, 1998). Payoff biased imitation, on the other hand, has been discussed in both 

economics (Schlag, 1998) and cultural evolution  (Boyd & Richerson, 1985, 2009; Mesoudi & 

O’Brien, 2008), and generally refers to the type of copying strategy where the probability of 

adopting a cultural variant depends on some observed payoff (the same bias has also been called 

success bias, see (Baldini, 2012) and "indirect bias" in Boyd & Richerson (1985)'s original 

formulation). In some recent theoretical models, it has been used to describe the trait-adoption 

strategy where the probability of adopting a particular cultural variant is positively related (e.g. 

directly proportional) to its relative payoff (Baldini, 2012; J. Kendal et al., 2009). 

Typically, the different transmission biases and the associated learning rules are treated 

as distinct strategies favored in different environmental contexts. For example, conformist 

transmission has been shown to be favored (compared to unbiased frequency dependent 

transmission) when the number of traits involved is large (Nakahashi et al., 2012) or the 

population size is large (Perreault et al., 2012). Similarly, payoff bias has been suggested to be an 

adaptive strategy when the high-payoff variant is rare and the payoff information is not very 

stochastic (Baldini, 2012). Such treatment allows for evolutionary stable strategy (ESS) analysis 

and has provided much insight for both understanding how our ancestral environmental 

conditions might have shaped our learning psychology and how such learning psychology might 

flexibly respond to specific situations that individuals may encounter in their lifetime. In reality, 

however, humans likely possess a suite of learning strategies and the actual decision making in a 

given situation may involve more than one strategy. In other words, different types of learning 

are not psychologically distinct processes (Heyes, 1994; Plotkin, 1988), and instead of 

employing individual strategies in particular learning instances, humans may combine multiple 

strategies into a single decision making calculus (Perreault et al., 2012). 

However, there are many ways to combine or integrate different learning strategies into a 

single strategy (hereafter referred to as "integrated strategy"). Many existing cultural 

evolutionary models treat these integrated strategies as having a step-like structure; that is, 
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individuals may utilize strategy 1 by default but will switch to strategy 2 if certain criteria are 

met. For example, individuals may first attempt payoff biased imitation but will fall back to 

some frequency dependence if observed payoffs are tied (McElreath et al., 2008). Similarly, 

Boyd & Richerson (1995) model a situation where individuals first compare the payoffs of two 

variants at a cost (individual learning) and will imitate (social learning) if the payoff difference is 

not sufficiently large. In a more general case, Enquist et al. (2007)'s “critical social learning” 

strategy has the same structure: individuals attempt social learning first and will perform 

individual learning if socially acquired behavior is deemed unsatisfactory by some standards. 

Relatedly, in an earlier seminal work on conformist transmission (Henrich & Boyd, 1998), social 

learning and individual learning are attempted at different stages of individuals' life cycle. In 

contrast, relatively less attention has been paid to the kind of integrated strategies where 

information produced by transmission biases is processed simultaneously. Previous work that 

does take into account multiple transmission biases tends to treat payoff as feedback from the 

environment and analyzed specific context such as punishment (Henrich & Boyd, 2001) and 

innovation diffusion (Henrich, 2001).  

Existing models have also primarily focused on comparing individual learning and social 

learning, with the goal of examining the conditions under which either kind of learning is 

evolutionarily advantageous (Boyd & Richerson, 1996; Nakahashi et al., 2012). It is worth 

noting that “social learning” is not a single strategy but refers to a multitude of ways in which 

individuals acquire information from others in the community (Laland, 2004), and much less 

effort has been devoted to understanding how various social learning biases (such as conformist 

bias and payoff bias) may interact with one another and their relative importance in influencing 

trait adoption decisions. Given our species' enormous reliance on social learning, a closer 

examination of these different types of social learning strategies may be particularly informative. 

Empirically, much effort has been devoted to understanding how individuals apply these 

different learning strategies in experimental setups (McElreath et al., 2005; Morgan et al., 2012; 

Muthukrishna et al., 2016). In general, payoff bias is observed in learning tasks, including young 

children and chimpanzees (Vale et al., 2017). On the other hand, human subjects usually respond 

to frequency information when such information is available, though conformity is not always 

observed (McElreath et al., 2005). Exactly teasing apart or distinguishing different transmission 
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biases with experimentation may be difficult due to individual heterogeneity, yet there are good 

reasons to suspect that individual decision making in real-world situations involve some kind of 

combination of multiple learning biases, as they often serve the same inferential purpose, 

especially in the domain of technology.  

In this paper, I build upon and complement existing work by proposing a simple model 

where individuals process frequency and socially acquired payoff information simultaneously in 

a single decision-making calculus, and examine how the “weights” (assuming they are 

genetically transmitted) that individuals associate with different information sources evolve. To 

my knowledge, there has not been any empirical evidence that humans utilize one learning 

strategy first and then another in a sequential manner when deciding what cultural variant to 

adopt, and I argue that my model setup is a more realistic description of the actual psychological 

mechanism of human decision making for two reasons. First, decades of research in cognitive 

psychology has conclusively demonstrated that humans have rich cognitive structures that 

process input information in rather sophisticated ways in contrast with blunt stimulus-response 

behaviorism (Greenwood, 1999; Miller, 2003; Pekala & Pekala, 1991), and that humans are 

perfectly capable of integrating different kinds of information in a single inferential process to 

respond flexibly and adaptively to a multi-dimensional environment (Angelaki et al., 2009; 

Kayser & Shams, 2015). Additionally, I also allow the magnitude of conformity to vary and 

evolve at the individual level, building upon the classic work of Henrich & Boyd (1998).  

Instead of identifying some optimal solution, I aim to illustrate the advantage of utilizing 

both frequency dependent bias (including conformist bias) and payoff bias and briefly discuss 

the implications for human social learning. While the ultimate elucidation of the exact 

mechanisms of human information processing and decision making is likely to require 

breakthroughs in neurobiology and brain science, theoretical models that take an evolutionary 

approach can provide potential direction and guidance given that millions of years of evolution 

presumably has equipped humans with some adaptive design of information acquisition and 

processing (Richerson, 2019). 

Unlike many theoretical models on the evolution of transmission biases, the present 

model assumes the environment is constant with regard to a given pair of variants in the sense 

that one variant has higher payoff than the other on average, though the actual payoff that each 
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individual obtains vary probabilistically. Therefore, one cultural variant may be viewed as 

strictly superior to the other regarding its payoff (see Henrich & Boyd (2001) for some other 

models with the constant environment assumption). While it is true that the payoff/fitness benefit 

of many cultural traits depends on environmental states (e.g. variant A confers higher payoff in 

state 1 but relatively lower payoff in state 2) (Richerson, 2019), our cultural capacity also needs 

to deal with the myriad of cultural variants whose payoffs do not necessarily depend on 

environments. In other words, there exist cultural traits where one variant is simply better (has 

higher payoff) on average than another across different environmental states. This is especially 

true in the domain of technology; examples include the replacement of stone tools by bronze/iron 

tools (Edmonds, 2003) and the numerous technological breakthroughs during the industrial 

revolution (Thackray, 1970). Ultimately, what this assumption says is simply that certain 

variants confer higher payoff than others over the long run in particular ecological/social 

environments, although the actual payoff that individuals obtain may vary due to idiosyncratic 

factors. Indeed, continued increase in adaptiveness1 would be difficult to achieve if all variants 

confer exactly the same average payoff. The large repertoire of cultural items in human 

populations means that naive individuals may often encounter situations where she needs to 

evaluate alternative cultural variants and decide which one(s) to adopt, and this creates a 

selective environment in which individuals with a decision-making apparatus that increases their 

chance of adopting the high-payoff variants would be favored by natural selection. 

2. Model and Results 
In this stylized model, agents face a decision of adopting one of the two cultural variants (C1 and 

C2) that have associated payoffs which can be observed with error. I propose a straightforward 

algebraic way of combining frequency and payoff information into a single probabilistic decision 

making equation, and examine the evolutionary dynamics of cultural variants under such 

decision making strategy. I then consider the evolution of the relative importance (referred to as 

"weights" in the model) that individuals place on observed frequency and payoff under various 

conditions. 

 
1 For example, suppose X1/X2, Y1/Y2, and Z1/Z2 denote different components of the same technology; for human 
populations to progressively achieve higher payoff, evolution needs to figure out the superior variant for each 
component and “lock onto it”. This process will be modelled later with an agent-based simulation approach.  
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2.1. Baseline Model 
For analytic convenience, I take the typical assumptions of asexual reproduction and non-

overlapping generations2 (Day & Bonduriansky, 2011). Naive agents randomly sample a number 

of cultural models from the parental generation and make their adoption decision based on both 

the number of models possessing C1/C2 and the payoff of C1/C2. 

Denote the number of C1 and C2 models in the sample 𝑛𝑛1 and 𝑛𝑛2, and payoff of C1 and 

C2 𝑏𝑏1 and 𝑏𝑏2 respectively. Assuming the payoff observation error ϵ is normally distributed with 

mean 0 and variance σ2 for both variants, define a naive agent's probability of adopting C1 as 

(note that conformity has not been included yet) 

𝑃𝑃𝑃𝑃�𝐶𝐶1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑛𝑛1, 𝑛𝑛2�

=

⎩
⎨

⎧
1                                                                                           𝑖𝑖𝑖𝑖 𝑛𝑛2 = 0
0                                                                                           𝑖𝑖𝑖𝑖 𝑛𝑛1 = 0

(𝑛𝑛1) ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + ϵ) ⋅ 𝑤𝑤𝑏𝑏

(𝑛𝑛1 + 𝑛𝑛2) ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + ϵ + 𝑏𝑏2 + ϵ) ⋅ 𝑤𝑤𝑏𝑏
                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

   (1) 

Where 𝑤𝑤𝑛𝑛 and 𝑤𝑤𝑏𝑏 represent the weight attached to observed variant frequency and observed 

payoff. Note that 𝑤𝑤𝑛𝑛 and 𝑤𝑤𝑏𝑏 theoretically can be any real number while in practice their values 

need to be non-negative to be sensible. Since observed payoff error ϵ has mean 0 it will be 

omitted in subsequent analytic formulations. This particular way of constructing the probability 

of adopting C1 ensures that 𝑃𝑃𝑃𝑃�𝐶𝐶1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑛𝑛1, 𝑛𝑛2� is properly bounded between 0 and 1, and 

the relative importance of observed frequency and payoff can be flexibly adjusted. Note that in 

the special case where one of the weights is zero, equation (1) either becomes frequency 

dependent transmission (𝑤𝑤𝑏𝑏 = 0) or payoff biased transmission (𝑤𝑤𝑛𝑛 = 0).  

 Note that (𝑛𝑛1)⋅𝑤𝑤𝑛𝑛+(𝑏𝑏1+𝜖𝜖)⋅𝑤𝑤𝑏𝑏
(𝑛𝑛1+𝑛𝑛2)⋅𝑤𝑤𝑛𝑛+(𝑏𝑏1+𝜖𝜖+𝑏𝑏2+𝜖𝜖)⋅𝑤𝑤𝑏𝑏

 may be viewed as an individuals’ subjective belief of 

C1’s efficacy (i.e. the probability that performing C1 would yield a successful outcome) in a 

Bayesian framework (anonymized, forthcoming) where individuals update their beliefs regarding 

the efficacy of various technological variants. The numerator (𝑛𝑛1) ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + 𝜖𝜖) ⋅ 𝑤𝑤𝑏𝑏 would 

thus denote the amount of evidence that favors C1 and the denominator (𝑛𝑛1 + 𝑛𝑛2) ⋅ 𝑤𝑤𝑛𝑛 +

(𝑏𝑏1 + 𝜖𝜖 + 𝑏𝑏2 + 𝜖𝜖) ⋅ 𝑤𝑤𝑏𝑏 the total amount of evidence. Interested readers may see Anonymized 

 
2These assumptions will also be relevant in the agent-based simulation later in the paper. 
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(forthcoming, note the difference in the notation of weights) for an analysis of the population 

dynamics of technological evolution using the same belief construction method.  

In equation (1), the frequency-dependent component of 𝑃𝑃𝑃𝑃�𝐶𝐶1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑛𝑛1, 𝑛𝑛2� is 

unbiased (conformist bias will be added later) and the payoff-dependent component follows a 

version of the "proportional imitation rule" (Schlag, 1998). In this case, naive individuals 

compare C1 and C2's payoff which proportionally contribute to the overall probability of 

adopting C1/C2.  

First let us examine the change in C1 frequency from one generation to the next under 

such adoption rule. Let the frequency of C1 at a given time be 𝑝𝑝. As the individuals choose their 

models randomly from the parental generation, the number of models with cultural variant C1 

should follow a binomial distribution (Boyd & Richerson, 1985). In the next generation, the 

frequency of C1 𝑝𝑝′ is therefore 

𝑝𝑝′ = 𝑝𝑝𝑛𝑛 + � [(
𝑛𝑛1 ⋅ 𝑤𝑤𝑛𝑛 + 𝑏𝑏1 ⋅ 𝑤𝑤𝑏𝑏

𝑛𝑛 ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + 𝑏𝑏2) ⋅ 𝑤𝑤𝑏𝑏
)

𝑛𝑛−1

𝑛𝑛1=1

⋅ �
𝑛𝑛
𝑛𝑛1
� ⋅ 𝑝𝑝𝑛𝑛1 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑛𝑛1] (2) 

where 𝑛𝑛 represents the total number of sampled models (𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2).3 Simplify equation (2), 

we have  

𝑝𝑝′ =
𝑛𝑛 ⋅ 𝑝𝑝 ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 − (1 − 𝑝𝑝)𝑛𝑛 ⋅ 𝑏𝑏1 + 𝑝𝑝𝑛𝑛 ⋅ 𝑏𝑏2) ⋅ 𝑤𝑤𝑏𝑏

𝑛𝑛 ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + 𝑏𝑏2) ⋅ 𝑤𝑤𝑏𝑏
(3) 

In order to identify possible equilibrium, we can simply set 𝑝𝑝′ = 𝑝𝑝. However, analytically 

solving equation (3) can be unwieldy; according to Abel-Ruffini theorem, there are no solution 

in radicals for polynomial equations of degree five or higher. Assuming 𝑤𝑤𝑏𝑏 ≠ 0 (realistically 

speaking 𝑤𝑤𝑏𝑏 is usually larger than 0) and further simplify and re-arrange equation (3), we get  

𝑝𝑝∗ =
𝑏𝑏1 − (1 − 𝑝𝑝∗)𝑛𝑛 ⋅ 𝑏𝑏1 + 𝑝𝑝∗𝑛𝑛 ⋅ 𝑏𝑏2

𝑏𝑏1 + 𝑏𝑏2
(4) 

 
3 When 𝑤𝑤𝑏𝑏 = 0 (i.e. probability of adopting cultural variants only affected by their frequency), equation (2) is a 
special case of equation (5) in Denten et al. (2020). Put more simply, this equation becomes just 𝑝𝑝′ = 𝑝𝑝.  
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where 𝑝𝑝∗ denotes the equilibrium C1 frequency, with 𝑝𝑝∗ = 0 and 𝑝𝑝∗ = 1 as solutions. Note that 

when the number of sampled models 𝑛𝑛 is relatively large and 0 < 𝑝𝑝 < 1, we may ignore terms 

with 𝑝𝑝∗𝑛𝑛 and (1 − 𝑝𝑝∗)𝑛𝑛 and therefore equation (4) becomes 

𝑝𝑝∗ =
𝑏𝑏1

(𝑏𝑏1 + 𝑏𝑏2)
(5) 

The accuracy of the approximation of equation (5) depends on the magnitude of 𝑛𝑛, and a 

thorough exploration of the parameter space to check its validity can be found in Supplemental 

Material. Equation (5) shows that the frequency of C1 at equilibrium is determined by the 

relative payoff of the two cultural variants, independent of weights and number of models 

sampled (given the approximation assumption that 𝑛𝑛 is large). This makes intuitive sense, as 

unbiased frequency dependent transmission itself does not change the relative frequency of 

cultural variants. In the following sections, equation (5) will also be used as a baseline condition 

to contrast with more complex situations that include additional parameters. 

Figure 1 provides a graphical illustration of the relationship between current frequency of 

cultural variant C1 and change in frequency using both analytic computation (equation 2) and 

agent-based simulation (equation 1). As can be seen, when 𝑛𝑛 = 10, equation (5) already provides 

a pretty good approximation, as the 𝑝𝑝′ − 𝑝𝑝 curve crosses 0 right at 𝑏𝑏1
𝑏𝑏1+𝑏𝑏2

. This stable 

polymorphic equilibrium (𝑝𝑝′ − 𝑝𝑝 crossing 0 with negative slope) exists in most cases in addition 

to the obvious equilibrium states of 𝑝𝑝 = 0 and 𝑝𝑝 = 1. Note that both 𝑝𝑝 = 0 and 𝑝𝑝 = 1 are 

unstable equilibria, meaning they can only be maintained in the absence of innovation/invading 

variants, and slight deviation would push 𝑝𝑝 away from these equilibrium states. This suggests 

that in the absence of additional forces, C1 and C2 will co-exist in the population regardless of 

the initial population composition (so long as the population does not entirely consist of C1 or 

C2) under unbiased frequency dependence and proportional imitation based on observed payoff4. 

Note the systematic deviation from the predicted equilibrium given by equation (5) when 𝑛𝑛 is 

small and the payoff difference between the two variants large: most of the 𝑝𝑝′ − 𝑝𝑝 curve in the 

bottom right plot is below 0, meaning variant C2 is favored. This is because of the particular way 

 
4 It is worth pointing out that the evolutionary dynamics as shown in Figure 1 resembles that of anti-conformist 
transmission, though no conformity related bias has been introduced. This is because the payoff component causes 
the population to evolve towards  𝑏𝑏1

(𝑏𝑏1+𝑏𝑏2)
, and thus the rare variant can increase in frequency.  
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adoption probability is constructed as shown in equation (1): the overall adoption probability has 

both a frequency component and a payoff component, and when 𝑛𝑛 is small, the relative influence 

of frequency information on the overall probability is smaller and therefore payoff bias will 

dominate, causing the population to more likely consist of variant with higher payoff (C2)5.  

 

 

Figure 1: Relationship between current frequency 𝑝𝑝 and change in frequency 𝑝𝑝′ − 𝑝𝑝 (𝑝𝑝′ denotes the frequency in the 

next generation) under different parameter combinations. 𝑏𝑏1 is fixed at 1, σ2 = 0.1 (the variance for the payoff error 

term in agent-based simulation), and both 𝑤𝑤𝑛𝑛 and 𝑤𝑤𝑏𝑏  are set to be 1. Analytic computation and agent-based 

simulation are represented by black solid lines and red dotted lines respectively, and the approximated equilibrium 

values according to equation (5), ( 𝑏𝑏1
𝑏𝑏1+𝑏𝑏2

) is marked by dotted blue lines. 

2.2 Adding Conformist Bias 
We now include a conformist bias parameter. Classically, conformist bias has been modeled as 

the probability of adopting the most common variant being its actual frequency plus a positive 

 
5 It is worth re-iterating that this result stems from the construction of equation 1, and may not hold for other 
formulations.  
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value (denoted by 𝐷𝐷)6. Following the notation scheme in equation (1), an individual's probability 

of adopting C1 in the presence of conformist transmission bias thus becomes 

𝑃𝑃𝑃𝑃�𝐶𝐶1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑛𝑛1, 𝑛𝑛2� =

⎩
⎪⎪
⎨

⎪⎪
⎧

1 𝑖𝑖𝑖𝑖 𝑛𝑛2 = 0
0 𝑖𝑖𝑖𝑖 𝑛𝑛1 = 0

(𝑛𝑛1 + 𝐷𝐷) ⋅ 𝑤𝑤𝑛𝑛 + 𝑏𝑏1 ⋅ 𝑤𝑤𝑏𝑏

(𝑛𝑛1 + 𝑛𝑛2) ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + 𝑏𝑏2) ⋅ 𝑤𝑤𝑏𝑏
𝑖𝑖𝑖𝑖 𝑛𝑛1 ≠ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛2 ≠ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 > 𝑛𝑛2 

(𝑛𝑛1 − 𝐷𝐷) ⋅ 𝑤𝑤𝑛𝑛 + 𝑏𝑏1 ⋅ 𝑤𝑤𝑏𝑏

(𝑛𝑛1 + 𝑛𝑛2) ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + 𝑏𝑏2) ⋅ 𝑤𝑤𝑏𝑏
𝑖𝑖𝑖𝑖 𝑛𝑛1 ≠ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛2 ≠ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛1 < 𝑛𝑛2

(6) 

Note that in order for 𝑃𝑃𝑃𝑃�𝐶𝐶1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑛𝑛1, 𝑛𝑛2� to be properly bounded between 0 and 1, 

𝐷𝐷 needs to satisfy the condition −�𝑛𝑛
2

+ 1� ≤ 𝐷𝐷 ≤ 1 when 𝑛𝑛 is even and −𝑛𝑛+1
2
≤ 𝐷𝐷 ≤ 1 when 𝑛𝑛 

is odd (negative values of 𝐷𝐷 would represent anti-conformist bias), where 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2. If we set 

𝑤𝑤𝑏𝑏 = 0, i.e. agents make trait adoption decisions only based on frequency information, equation 

(6) becomes the classic result in cultural evolution literature where Boyd and Richerson (1985) 

have solved the special case when 𝑛𝑛 = 3. Here we are interested in how conformist bias may 

affect the adoption of cultural variants when both payoff and frequency are taken into the 

individuals decision making calculus. Again, we first look at the relationship between current 

frequency and change in frequency under different 𝐷𝐷 conditions. Given the current frequency of 

C1 being 𝑝𝑝, the frequency of C1 in the next generation 𝑝𝑝′ can be expressed similarly as in 

equation (2): 

𝑝𝑝′ = �
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⎪
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⎧

𝑛𝑛1
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� ⋅ 𝑝𝑝𝑛𝑛1 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑛𝑛1 𝑖𝑖𝑖𝑖 𝑛𝑛1 = 0 𝑜𝑜𝑜𝑜 𝑛𝑛1 = 𝑛𝑛

𝑛𝑛1 ⋅ 𝑤𝑤𝑛𝑛 + 𝑏𝑏1 ⋅ 𝑤𝑤𝑏𝑏

𝑛𝑛 ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + 𝑏𝑏2) ⋅ 𝑤𝑤𝑏𝑏
⋅ �
𝑛𝑛
𝑛𝑛1
� ⋅ 𝑝𝑝𝑛𝑛1 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑛𝑛1 𝑖𝑖𝑖𝑖 𝑛𝑛1 = 𝑛𝑛/2

(𝑛𝑛1 + 𝐷𝐷) ⋅ 𝑤𝑤𝑛𝑛 + 𝑏𝑏1 ⋅ 𝑤𝑤𝑏𝑏

𝑛𝑛 ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + 𝑏𝑏2) ⋅ 𝑤𝑤𝑏𝑏
⋅ �
𝑛𝑛
𝑛𝑛1
� ⋅ 𝑝𝑝𝑛𝑛1 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑛𝑛1 𝑖𝑖𝑖𝑖 𝑛𝑛1 > 𝑛𝑛/2

(𝑛𝑛1 − 𝐷𝐷) ⋅ 𝑤𝑤𝑛𝑛 + 𝑏𝑏1 ⋅ 𝑤𝑤𝑏𝑏

𝑛𝑛 ⋅ 𝑤𝑤𝑛𝑛 + (𝑏𝑏1 + 𝑏𝑏2) ⋅ 𝑤𝑤𝑏𝑏
⋅ �
𝑛𝑛
𝑛𝑛1
� ⋅ 𝑝𝑝𝑛𝑛1 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑛𝑛1 𝑖𝑖𝑖𝑖 𝑛𝑛1 < 𝑛𝑛/2

𝑛𝑛

𝑛𝑛1=0

(7) 

where 𝐷𝐷 represents the magnitude of conformist bias. Equation (7) is simply says that the 

frequency of C1 in the next generation may be represented by the sum of probability of adopting 

C1 under various sample composition conditions. Note that when 𝑛𝑛1 = 0 𝑜𝑜𝑜𝑜 𝑛𝑛1 = 𝑛𝑛, agents 

 
6 There has also been some discussion of negative D values (i.e. anticonformity). For example, see Denton et al. 
(2020). 
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never get to experience the alternative variant and its payoff, therefore the 𝑏𝑏1⋅𝑤𝑤𝑏𝑏
(𝑏𝑏1+𝑏𝑏2)⋅𝑤𝑤𝑏𝑏

 component 

is absent in the frequency calculation of C1 in the next generation. 

As in the case of unbiased transmission, we first examine the change in frequency of C1 

𝑝𝑝′ − 𝑝𝑝 as a function of current frequency of C1, 𝑝𝑝. Figure 2 shows the expected change in 

frequency under different conditions, and a few remarkable features should be noted. First, as 

pointed out previously, there is always a stable polymorphic equilibrium (𝑝𝑝′ − 𝑝𝑝 = 0) when the 

conformist bias parameter 𝐷𝐷 is zero, which is determined by the relative payoff difference of the 

two cultural variants as well as the number of models sampled. On the other hand, when the 

conformist bias parameter 𝐷𝐷 is sufficiently large (𝐷𝐷 = 1)7 stable polymorphic equilibrium may 

not exist and the population will always move towards either 𝑝𝑝 = 0 or 𝑝𝑝 = 1 depending on the 

initial frequency (as in the case of 𝑏𝑏2 = 1.1). The intuition here is that because the most common 

variant is disproportionally favored under conformist transmission, a strong conformist bias will 

tend to push the common variant towards fixation.  

 

 
7 Due to the way conformist bias is constructed here (as a single coefficient with maximum 𝐷𝐷 = 1), a variant 
sampled in 𝑛𝑛1

𝑛𝑛
  models, where 𝑛𝑛1 > 𝑛𝑛2, can be adopted with a probability of at most 𝑛𝑛1+1

𝑛𝑛
. Thus, as 𝑛𝑛 becomes large, 

the effect of conformity becomes weaker 
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Figure 2: Relationship between current frequency 𝑝𝑝 and change in frequency 𝑝𝑝′ − 𝑝𝑝  in the presence of conformist 

bias (𝐷𝐷 > 0), anti-conformist bias (𝐷𝐷 < 0), or unbiased frequency-dependent transmission (𝐷𝐷 = 0) under different 

parameter combinations. 𝑏𝑏1 is fixed at 1, and both 𝑤𝑤𝑛𝑛 and 𝑤𝑤𝑏𝑏  are set to be 1. The reference line 𝑦𝑦 = 0 is marked by 

the solid blue line. All values are computed according to equation (7). 

What is particularly interesting, however, is that when 𝐷𝐷 is of intermediate magnitude 

(𝐷𝐷 = 0.5), change in frequency can be entirely negative with 𝑛𝑛 = 3 and 𝑛𝑛 = 5 in the middle 

column (𝑏𝑏2 = 1.5), meaning that the cultural variant that confers high payoff (C2) will reach 

fixation regardless of the initial population composition provided that 𝑝𝑝 is not equal to 1, as can 

be seen in the middle column (𝑏𝑏2 = 1.5) and the right column (𝑏𝑏2 = 2). This result suggests that 

moderate conformist transmission bias consistently favors the high payoff variant when 

individuals take both frequency and payoff into trait adoption decisions. Intermediate conformist 

bias can both resist the invasion of cultural variant with lower payoff and allow for the spread of 

cultural variant with higher payoff, because proportional imitation based on relative payoff 

favors the high-payoff variant but does not push it into fixation as the low-payoff variant still has 

some probability of being adopted. As the frequency of the high-payoff variant increases, 

conformist transmission may push it towards fixation once it becomes the more common variant 

(𝑝𝑝 > 0.5). 

2.3 Evolution of Information Weights and Conformist Bias 
Since the combination of payoff bias and conformist bias may lead to better population level 

outcomes (in terms of the adoption of the cultural variant with higher payoff), how would natural 

selection operate on the relative weight placed on observed frequency and payoff as well as the 

magnitude of conformist bias? In this section we assume weights (𝑤𝑤𝑛𝑛 and 𝑤𝑤𝑏𝑏) and conformist 

bias (𝐷𝐷) are genetically transmitted and allow them to evolve, and track its evolutionary 

trajectory under various conditions. Notice that cultural variants now affect biological fitness 

whereas they did not previously. To fully explore the evolutionary dynamics, in particular the co-

evolution patterns of different transmission biases, I construct an agent-based simulation that 

allows both the weights and the conformist bias to evolve by treating them as individual 

attributes. To increase realism of the setup, instead of solving one problem with a fixed solution 

(picking the variant with higher payoff from C1/C2), agents need to solve a relatively large 

number of independent problems; that is, they need pick the superior variant for multiple 

dichotomous cultural traits whose payoff vary in magnitude probabilistically. These traits could 
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be different components of the same cultural practice or technology (e.g. different aspects of 

arrow/bow design) or independent cultural variants that are fitness-relevant. Specifically, in each 

independent simulation run, each agent possesses a number of traits (20 in the simulation) with 

the first variant being fixed in the beginning and an “invading” variant being introduced to the 

population at a small percentage (5% in the simulation) to each trait in a periodic fashion. The 

payoff of the first variant for each pair (𝑏𝑏1) is set to be 1 for convenience, and the payoff of the 

invading variant is normally distributed with mean 𝑏𝑏2 and variance 𝜎𝜎𝑖𝑖2. All the following 

analyses are based on the statistical average of 2000 independent simulation runs to increase the 

robustness of the conclusions. Note that 1) in any single simulation run the payoff difference for 

each pair of variants is constant, meaning that for any given trait one variant is either reliably 

better or reliably worse; however, across different traits the “invading” variant may have payoff 

higher or lower than the default payoff, and the actual payoff obtained by each individual is also 

variable, which is modeled as a normal distribution with mean equal to the payoff of cultural 

variants and variance σ2, 2) these different pairs of variants do not appear all at once in the 

beginning of the simulation but occur periodically over evolutionary time. In the simulation 

setup below, an “invading” variant is introduced for an existing trait at some fixed interval (10 

generations in simulation)8, meaning that throughout the simulation (200 generations total) there 

is a constant supply of new variants and as a result individuals need to solve these new variant 

adoption problems.  

 The above setup thus creates a scenario where agents are faced with a number of decision 

problems that occur at regular intervals in evolutionary time, and each of these problems has 

multiple potential solutions (in the model, there are two “solutions”, or cultural variants, for each 

trait adoption decision). The environment is stable/constant in the sense that there is a “correct” 

solution (the variant with higher average payoff) for all decision problems, yet changing in the 

sense that new decision problems are periodically introduced rather than all known from the very 

beginning. Generally speaking, the more ecologically valid conditions are when the invading 

variants have lower payoff than the existing variants (𝑏𝑏2 < 0) as many of the “invading” or new 

variants are the results of random or unintentional errors, yet for the sake of completeness I also 
 

8 Realistically speaking, the time interval at which new variant appears involves some random component, but in the 
present simulation a fixed interval is used as it does not qualitatively change the nature of the simulation and allows 
for better visual inspection of evolutionary trends. 
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explored the opposite conditions when the invading variants on average confer higher payoff 

(𝑏𝑏2 > 0). In the analysis below, I track the temporal changes of variant frequency for C1/C2, the 

weight on observed frequency (𝑤𝑤𝑛𝑛) and the magnitude of conformist bias (𝐷𝐷).  

Recall that the weights and conformist bias are genetically transmitted under asexual 

reproduction, and the life cycle of agents are modeled as a simple Wright-Fisher process with 

selection (Ewens, 2012), where the population is of constant size 𝑁𝑁 and an agent's probability of 

contributing to the gene pool (reproduction) is proportional to its fitness, which is the sum of the 

payoffs of the variants that the individual possesses. Each individual’s initial information weight 

on payoff (𝑤𝑤𝑛𝑛) is sampled from a uniform distribution (0,2) (their information weight on payoff 

(𝑤𝑤𝑏𝑏) is set to be constant 1), and their magnitude of conformist bias (𝐷𝐷) from uniform 

distribution (-1,1). In all simulation runs the second, invading variant is introduced into the 

simulation at 5% frequency. Thus, we simulate a situation where individuals start with their 

default set of variants and new variants “attempt” to invade the population during evolutionary 

time. 

To examine how natural selection affects 𝑤𝑤𝑛𝑛 and 𝐷𝐷 values in such a situation, I ran a 

large number of simulations to fully explore the parameter space (see Supplemental Material for 

simulation setup and parameter value details) and Figure 3 shows the evolutionary trajectory of 

the frequency of C1 (the first variant of the starting trait) as well as the population average 𝑤𝑤𝑛𝑛 

and 𝐷𝐷 over time.  
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Figure 3: Temporal evolutionary trajectories of C1 frequency as well as weight on frequency information (𝑤𝑤𝑛𝑛) and 

the magnitude of conformist bias (𝐷𝐷) under various payoff conditions (average of 2000 independent simulations). 

𝜎𝜎𝑖𝑖2 = 0.3, σ2 = 0.1, 𝑁𝑁 = 1000, and number of traits each agent possesses = 20 (e.g., each agent needs to make 20 

independent variant adoption decisions, with new variants introduced every 10 generation).  Dotted lines are 

references lines (𝑦𝑦 = 0). Other parameter values are specified in Supplemental Material. 

As expected, the magnitude of conformist bias parameter D generally increases in most 

conditions, though a small initial decline may sometimes be observed when the advantageous 

variant’s initial frequency is low. This is because when the advantageous variant (C2) is rare in 

the beginning of the simulation, individuals with anti-conformist bias (negative 𝐷𝐷) are more 

likely to acquire such high-payoff variant, yet once it becomes common in the population a 

positive conformist bias is favored by natural selection. As can be seen in the case of 𝑏𝑏2 = 1.4 

and 𝑏𝑏2 = 1.8, the initial decline in 𝐷𝐷 matches the decline in C1 frequency quite well; 𝐷𝐷 starts to 

increase as soon as the more advantageous variant (C2) crosses over 50% in frequency. Note that 

the population average 𝐷𝐷 never gets very large and reaches equilibrium at around 100 

generations, suggesting that while a positive conformist bias is generally favored, its magnitude 

is limited in the presence of payoff stochasticity. This is especially true when the payoff 

difference between the invading variants and the existing variants is not very large, as the more 
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frequent variant in the population is sometimes not the one with higher payoff, and a very strong 

conformist bias may mistakenly lead individuals to adopt the low payoff variants. It is important 

to note, however, that the evolutionary dynamics that we observe is largely due to the stable 

average payoff difference between the variants for any given trait in a given simulation run (e.g., 

C1 is either reliably better than C2 or vice versa), and may not generalize to situations where the 

default variants do not reliably differ from the invading variant with regard to payoff.  

We observe that the frequency of C1 (representing the first variant of all traits) all moves 

in the expected direction over evolutionary time, i.e., when C1 has higher payoff than C2 it 

remains at relatively high frequency and when C1 has relatively low payoff, its frequency 

consistently decreases (thus in the long run C2 becomes the dominant variant). Note that large 

payoff differences (𝑏𝑏2 = 0.2 and 𝑏𝑏2 = 1.8) enables the superior variant (higher payoff on 

average) to quickly reach fixation. When the average payoff difference between the two variants 

is small (e.g., 𝑏𝑏2 = 0.8 and 𝑏𝑏2 = 1.2), on the other hand, the two variants may stably co-exist for 

two related reasons: first, the equilibrium that would be reached in the absence of conformist bias 

may not be sufficiently different from 0.5; secondly, the magnitude of 𝐷𝐷 may never evolved to a 

sufficiently large degree to be able to push the more frequent variant to fixation. 

Regarding the evolution of 𝑤𝑤𝑛𝑛, there are two points worth noting: first, it changes 

primarily in the beginning in each condition and then slowly declines over evolutionary time, 

eventually reaching effective equilibrium (see Supplemental Material for extended simulation 

run (generation = 400) for condition 𝑏𝑏2 = 0.2 and 𝑏𝑏2 = 1.8). This is because the influence of 

information weights on payoff/fitness is rather limited, especially when the payoff difference 

between the two alternative variants is small. In our simulation, when the payoff difference 

between the existing and “invading” variants is larger (𝑏𝑏2 = 1.4 and 𝑏𝑏2 = 1.8), we do observe 

more/faster change in 𝑤𝑤𝑛𝑛. Second, the direction of change in 𝑤𝑤𝑛𝑛 depends on the relative 

frequency of high/low payoff variants in the population. When the invading variants have higher 

payoff (𝑏𝑏2 = 1.2, 1.4 and 1.8), we see a decrease in 𝑤𝑤𝑛𝑛; when they have lower payoff (𝑏𝑏2 = 0.6 

and 0.8), an initial increase in 𝑤𝑤𝑛𝑛 is observed. This is because when high-payoff variants are 

initially rare, it is better to rely more on payoff information (larger 𝑤𝑤𝑏𝑏, thus smaller 𝑤𝑤𝑛𝑛 relatively) 

as the relative payoff advantage is not matched by its frequency in the population. Conversely, 

when the invading variants are of lower payoffs, stronger reliance on frequency (large 𝑤𝑤𝑛𝑛) will 
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be favored. These results are consistent with Baldini (2012)'s conclusion that payoff bias favors 

rare variants; if the high-payoff variant is rare, then a stronger reliance on payoff (small 𝑤𝑤𝑛𝑛) 

would be more adaptive. The magnitude of change in 𝑤𝑤𝑛𝑛, on the other hand, crucially depends 

on the population composition with regard to variant frequencies: as can be seen, in the case of 

𝑏𝑏2 = 0.2 there is almost no change in 𝑤𝑤𝑛𝑛. This is because when the invading variant is vastly 

inferior regarding its payoff to the existing variant, the population immediately reaches fixation 

and leaves no time for 𝑤𝑤𝑛𝑛 to evolve. Note that in the most extreme case where all variants are 

fixed in the population, all individuals would have the exact same fitness regardless of their 𝑤𝑤𝑛𝑛 

(or 𝐷𝐷 for that matter). Remarkably, both 𝐷𝐷 and 𝑤𝑤𝑛𝑛 reach effective equilibrium values despite the 

constant introduction of new traits, suggesting the robustness of these parameter values in 

continuously identifying adaptive cultural variants over evolutionary time.  

It should be noted that the above analyses assumes neither passive mutation nor active 

innovation of variants (i.e. C1 and C2 never mutate into each other). In the presence of either 

mutation or innovation that prevents the population from reaching complete fixation, the relative 

magnitude of 𝑤𝑤𝑛𝑛 will matter insofar as the population is polymorphic. Assuming the population 

reaches near fixation and the dominant variant has high payoff, a constant supply of low-payoff 

variant due to mutation/innovation will cause an increase in 𝑤𝑤𝑛𝑛; that is to say, individuals that 

weigh more on frequency information will enjoy a fitness advantage (assuming 𝐷𝐷 > 0). On the 

other hand, if the low-payoff variant reaches near fixation for whatever reason yet cannot drive 

the high-payoff variant into extinction, then 𝑤𝑤𝑛𝑛 will decrease, meaning those who rely more on 

payoff would have higher fitness (assuming 𝐷𝐷 > 0). The second scenario is less likely because 

normally we would expect the high-payoff variant to reach near fixation through a number of 

mechanisms. Therefore, if we consider one pair of dichotomous variants, a stronger reliance on 

observed frequency (𝑤𝑤𝑛𝑛) would be favored on average in settings where the transmission fidelity 

is not 100% due to transmission errors or certain individuals consciously experimenting different 

variants. However, we need to keep in mind that 1) as 𝑤𝑤𝑛𝑛 gets larger, the marginal fitness benefit 

that it confers declines dramatically, and 2) though not as common, there are cases where the 

low-payoff variant dominates the population and some consideration of the payoff difference 

would be advantageous.  
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3 Discussion 

3.1 Combining Frequency and Payoff Bias in Social Learning 
Although there hasn't been a lack of theorizing of transmission biases in cultural evolution, most 

published work has treated these biases as distinct strategies and aims to identify evolutionary 

stable strategies. In this paper I show the evolutionary dynamics of dichotomous cultural traits 

when individuals combine frequency and payoff information into a single decision-making 

calculus, and how natural selection may have selected for the weights of the two information 

input sources as well as the magnitude of conformist bias. In the agent-based simulation, instead 

of focusing on one pair of variants with fixed payoff differences, it involves a relatively large 

number of independent traits with stochastic payoffs and individuals need to make trait adoption 

decisions using their genetically inherited 𝑤𝑤𝑛𝑛/𝑤𝑤𝑏𝑏 and 𝐷𝐷. As such, this simulation offers some 

insights regarding how different learning biases may co-evolve to robustly solve multiple 

dynamic problems, and provides mathematical/computational rigor to previous verbal arguments 

regarding how payoff bias and conformist bias might interact with each other (Sterelny, 2007). 

Unbiased frequency-dependent transmission leads the population into a state that 

resembles Hardy-Weinberg equilibrium in population genetics (Meirmans, 2018) where 

frequencies of variants remain constant. Conformist bias by definition favors the more common 

variant and pushes the frequencies of variants towards the absorbing states 𝑝𝑝 = 0 and 𝑝𝑝 = 1. 

Intuitively, the caveat of conformist-biased transmission is that a previously adaptive cultural 

variant may become non-adaptive due to environmental change, and as a result the population 

may get stuck in a sub-optimal condition. Some theoretical work even suggests that relying on 

conformist transmission alone may lead to population collapse under certain circumstances 

(Whitehead & Richerson, 2009). 

Payoff bias on the other hand looks like an attractive alternative learning strategy as it 

directly compares different cultural variants and favors the one with higher payoff. Assuming 

payoff is statistically associated with fitness9 (see Baldini (2012) for instances where payoff may 

be quite dissociated from fitness), a reliance on payoff information may confer fitness advantage 

by adopting the high-payoff variant. However, payoff may be noisy and assessing it may involve 

 
9 Note that fitness was only incorporated in the agent-based simulation (section 2.3.), and not the first part of the 
model (section 2.1. and 2.2.).  
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a cost10 (Nakahashi et al., 2012). My model shows that a straightforward algebraic combination 

of these biases may prove a superior strategy: payoff bias tends to increase the frequency of the 

high-payoff variant, and once it passes 0.5 conformist bias may push it towards fixation. 

In the simulation, we observe that an intermediate level of conformist bias robustly 

evolves as it increases agents’ probability of adopting the superior variant that usually gets 

pushed to frequencies above 50% due to payoff bias. The effect of conformist bias's magnitude 

on the evolution dynamics is worth reiterating. If it is too small it cannot effectively help the 

high-payoff variant that is already common in the population to reach fixation, and if it is too 

large a rare high-payoff variant may never have a chance to pass 0.5 in frequency. In this 

integrated decision-making calculus, the adaptive synergistic interaction between the two biases 

requires the magnitude of 𝐷𝐷 to be within a particular range. In fact, 𝐷𝐷's magnitude likely matters 

whenever conformist bias is combined in this way with some additional mechanism that makes 

the adoption of the variant with higher payoff more likely, as the initial spread of high-payoff 

variant is always suppressed by strong conformity. We should also be aware of the fact that the 

conformist bias parameter may be subject to natural selection in contexts other than variants 

adoption where payoffs are only associated with the variants themselves; for example, a strong 

conformist bias may be especially advantageous in the domain of normative behaviors, as rare 

mutants may suffer severe fitness costs in the form of punishment (Nakao & Machery, 2012).    

In an earlier seminal paper on conformist transmission, Henrich and Boyd (1998) 

conclude that maximal conformity is favored under a broad range of conditions. This is not 

surprising, as the results of simulation studies that explore the evolution of conformity depend 

sensitively on the precise design of the simulations (Denton et al., 2020). In this case, the 

different conclusions are due to a crucial difference in the model setup: the payoffs that 

individuals obtain in Henrich and Boyd (1998) are a result of independent individual learning 

and as such individuals are always comparing the payoffs of different cultural variants, whereas 

in my model there is no individual experimentation and payoff information is always obtained 

culturally, and therefore the payoff of the variant not possessed by one’s cultural models is 

simply not available to the naive individual for payoff evaluation. This means that in the present 

setup if one variant reaches high frequency most naïve individuals may never experience the 

 
10 Though such cost is not incorporated in the present model.  
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payoff of the alternative variant, and in cases where the rare variant happens to have higher 

payoff, the population may nonetheless push the common variant (with lower payoff) towards 

fixation in the presence of strong conformist bias. 

Therefore, the population level consequences of conformity hinge upon the extent to 

which accurate payoff information can be obtained either through independent individual 

learning or some other payoff-revealing mechanisms. While individual trial-and-error learning 

certainly occurs, I suggest that the payoff information of many cultural items cannot be 

realistically evaluated and compared by potentially costly individual learning for two reasons. 

First, naïve individuals may not even be aware of the existence of alternative variants if they do 

not observe others possessing these variants; second, “trying” both variants and comparing their 

payoffs may not always be feasible; for example, comparing the efficacy of two illness 

treatments through individual learning requires one to intentionally get herself ill twice 

(presumably at different times). In fact, Henrich and Boyd (1998) do show that when individual 

learning is highly error-prone (small ρ) conformist bias does not evolve to large values. My 

analysis here thus complements previous work by showing that in cases where payoff 

information is obtained culturally, a very strong conformist bias may not be optimal at the 

population level. 

In general, integrated strategies, broadly defined, can be more adaptive than individual 

strategies (Enquist & Ghirlanda, 2007; Laland, 2004). In Enquist et al. (2007)'s approach, for 

example, “critical social learners” (individuals with the strategy of attempting social learning 

first and perform individual learning if social learning proves unsatisfactory) are more likely to 

obtain the more advantageous variant compared to individual learners. However, in the absence 

of conformist bias the advantageous variant rarely reaches fixation in the population, and a stable 

polymorphic equilibrium of the two cultural variants exists. It is likely that the critical social 

learners (as well as individuals with other integrated strategies) may perform even better 

regarding their probability of obtaining the high payoff variant if they incorporate some form of 

intermediately strong conformist bias in their trait adoption decision in light of the result of the 

present model. This is because the conformist component in their decision-making favors the 

more frequent variant, and large proportion of critical social learners in the population are likely 

to cause the high payoff variant to be more frequent. It should be kept in mind, however, that 
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integrated strategies may be more computationally intensive and thus requires costly neural 

machinery. The present model does not assume any cost in employing integrated strategies, and 

further theoretical work may take this factor into consideration, ideally in light of neurological 

mechanisms in human learning.  

3.2 How Many Cultural Models to Learn from? The Effect of n 

Although most published theoretical models include some mentioning of the effect of 𝑛𝑛, 

systematic treatment remains scant (see Denton et al. (2020) and Perreault et al. (2012) for some 

exceptions). This is probably because the role 𝑛𝑛 plays is different under different sets of 

assumptions. In my model, 𝑛𝑛 is directly involved in the approximation that leads to equation (5). 

Here a large 𝑛𝑛 ensures that most naive agents will have both C1 and C2 models in their sample; 

in other words, a relatively large 𝑛𝑛 ensures that naive agents have a chance to experience the 

payoff of both C1 and C2 variants. When most naïve learners in the population have a chance to 

sample both C1 and C2 models, a decreasing 𝑛𝑛 means that the relative influence of the frequency 

dependent component diminishes as a result of equation (1), except in the most extreme case 

where 𝑛𝑛 = 1 (each agent randomly picks one model from the parental generation) payoff 

information becomes entirely irrelevant and we end up with a special case of the unbiased 

frequency-dependent transmission. 

Assuming no cost is incurred, sampling more individuals to learn from should always 

lead to better inferences, particularly from a Bayesian perspective. Perreault et al. (2012) point 

out that in their model a larger 𝑛𝑛 sometimes leads to worse inference, but suggests that this is an 

artefact due to agents' relatively simple priors. In reality, people likely do not rigidly sample a 

fixed number of individuals but rather make trait adoption decisions based on idiosyncratic 

personal experiences which include both individual learning and social informational inputs. 

Therefore, 𝑛𝑛 may be determined not by evolved human preferences but by external factors such 

as population size and interconnectedness, both of which have been shown to be important in 

human cultural evolution (Henrich, 2004). As such, demographic details of our ancestral 

population may be needed to better understand the evolutionary dynamics and outcomes of 

social learning strategies as affected by the number of models picked.   
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3.3 Evolution of Information Weights and Implications for Modeling Human Decision-

making 
In this stylized setting, then, how would natural selection operate on the weight of frequency and 

payoff information respectively when they are allowed to co-evolve with conformist bias? My 

results show that when one cultural variant on average confers higher payoff than the other 

variant, the direction and magnitude of change in the relative weights crucially depend on 

population composition (in particular, whether the high-payoff variant is the common variant or 

not). Therefore, given that humans likely encounter many such situations where they need to 

adopt some cultural variant among a number of candidates during their lifetime, it is unlikely that 

there is a single optimal weight across different learning situations. What is clear, however, is 

that both 𝑤𝑤𝑛𝑛 and 𝑤𝑤𝑏𝑏 are likely to be positive. In other words, it is better to take both frequency 

and payoff into consideration, though the degree to which frequency and payoff matters may 

vary in domain-specific ways. 

Intuitively, it seems a bad idea to completely ignore frequency or payoff information 

when it is available, and humans may adaptively and flexibly evaluate these different types of 

information depending on their prior beliefs and the specificities of the situation. In a way, what 

is presented in the paper is a proof-of-concept model showing that some way of combining 

observed frequency and observed payoff in a single decision-making calculus can be more 

advantageous than strategies discarding either information. My own fieldwork suggests that both 

types of information often feed into the same inferential process; for example, when evaluating 

some healing practice, the Wa and Yi people in southwest China frequently use "many people in 

the community use it" and "it worked on my friends" as reasons for its efficacy (Hong, 

unpublished). In the domain of technology where means-ends reasoning dominates, transmission 

biases often manifest themselves as cognitive processes of integrating information from different 

sources into a single inference, i.e. the cultural variants' efficacy or effectiveness (Hong & 

Henrich, 2021). 

In this model, payoff bias is implemented using the “proportional imitation” rule; Schlag 

(1998) has shown that this way of incorporating payoff information into decision making 

outperforms a number of other payoff-based learning strategies. But more generally, why not just 

compare payoffs when making trait adoption decisions? In addition to the aforementioned noise 
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and cost, payoff bias may not be the panacea that applies to all learning situations for two other 

reasons. First, many cultural traits do not have obvious payoffs associated with them. In fact, 

people often do not understand why particular actions are performed (Henrich, 2016) or the 

causal mechanisms underlying seemingly purposive actions (Derex et al., 2019). Second, people 

may simply have the wrong payoff associated with cultural practices. For example, people in 

small scale societies have tried all kinds of methods to induce rain (Frazer, 1890) and payoff 

biased imitation would lead one to nowhere as none of the methods had any real influence on 

weather. Thus, the applicability of payoff bias as a general learning mechanism may be limited 

and sole reliance on it can be non-adaptive.  

Actual human information processing and decision making are complicated and likely 

affected by a wide range of factors. Future evolutionary theorizing of human social learning may 

benefit from explicitly considering various types of information feeding into the same 

computational process and treating human decision making not as rigidly implementing pre-

programed rules but as flexibly influenced by the context. Models constructed with more 

psychological realism may then be empirically tested and the explanatory as well as predictive 

power of different learning models could be contrasted and compared to enhance our 

understanding of the important phenomenon of human social learning. 

4 Conclusion 
I have presented a model showing that in settings where one cultural variant strictly confers 

higher payoff than the other variant, combining frequency dependent bias and payoff bias in a 

single decision-making calculus can be more advantageous than employing either strategy alone, 

and that intermediate level of conformist bias may be particularly important in balancing 

resisting the invasion of low-payoff variants and helping the spread of high-payoff variants. The 

insights here are generally applicable when conformist bias is coupled with some other 

mechanism that favors the adoption of the high-payoff variant. 

Code Availability 
The graphical representations of all equations are created using python 3.7. The final agent-based 

simulation for the evolution of epistemic weights (shown in Figure 3) is created using Julia 1.5.0. 

All codes are available at https://github.com/kevintoy/epistemic_weight_evo.   

https://github.com/kevintoy/epistemic_weight_evo
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