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Abstract

Cognitive biases like underinference, the hard-easy effect, and recurrently non-monotonic

confidence are evolutionarily puzzling when viewed as persistent flaws in how people learn

from environmental feedback. To explain these empirically robust cognitive biases from

an evolutionary perspective, we propose a model of ancestral human learning based on

the cultural-evolutionary-theoretic hypothesis that the primary selection pressure acting on

ancestral human cognition pertained not to learning individually from environmental feed-

back, but to socially learning task-specific knowledge. In our model—which is inspired

by classical Bayesian models—an ancestral human learner (the student) attempts to learn

task-specific knowledge from a role model, with the option of switching between differ-

ent tasks and role models. Suppose that the student’s method of learning from their role

model is a priori uncertain—in that it can either be successful imitation learning or de facto

innovation learning—and the ecological fitness costs of meaningfully retaining environ-

mental feedback are high. Then, the student’s fitness-maximizing strategy does not retain

their environmental feedback and—depending on the choice of model parameters—can be

characterized by all of the aforementioned cognitive biases. Specifically, in order for the

evolutionarily optimal estimate of confidence in this learning environment to be recurrently

non-monotonic, it is necessary (as long as the environment’s marginal payoff function sat-

isfies a plausible quantitative condition) that a positive proportion of ancestral humans’

attempted imitation learning was unknowingly implemented as de facto innovation learn-

ing. Moreover, an ecologically rational strategy of selective social learning can plausibly

cause the evolutionarily optimal estimate of confidence to be recurrently non-monotonic in

the empirically documented way: general increase with an intermediate period of decrease.
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1 Introduction

Humans have evolved to meaningfully incorporate into their beliefs the low-variance, essen-
tially deterministic environmental feedback they observe—the domain of causal inference—so
as to improve future decisions (Pinker, 2010). For example, people often learn to pay credit card
bills (Agarwal et al., 2008) and return rented videos (Haselhuhn et al., 2012) on time after first
paying late fees. However, the same cannot be said when the variance is high. In the domain of
high-variance environmental feedback, unbiased Bayesian updating should in theory be norma-
tively rational (Corner & Hahn, 2012) and even evolutionarily optimal (McNamara & Houston,
1980) in many settings. In line with this, a review of 11 empirical studies of animal foraging and
reproductive decisions—spanning eight species of birds, three of non-human mammals, one of
fish, and one of insects—found the behavior of all but one of the species to be consistent with
the predictions of Bayesian updating models (Valone, 2006). For humans, however, learning
in settings of high-variance environmental feedback deviates from Bayesian updating in vari-
ous ways (e.g., Tversky & Kahneman, 1974). These deviations, referred to in the literature as
cognitive biases, result from evolved tendencies by which humans systematically fail to learn
meaningfully from high-variance environmental feedback.

A myriad of cognitive biases are apparent from the insightful experiments of Sanchez and
Dunning (2018, 2020) on human learning. In each variant of their experiment, subjects learned
a new task possessing a payoff structure with fixed uncertainty: classifying profiles with lists
of properties (for example, symptoms) into categories (for example, made-up diseases). The
subjects attempted this task 60 times while simultaneously reporting their confidence: their
self-estimate of the probability that their answer is correct. After each of their 60 answers, they
received immediate feedback. Despite this, the subjects did not learn from their environmental
feedback in a Bayesian-rational manner, as one can see from the following patterns in the data
(see Sanchez & Dunning, 2018, Figures 1–4; Sanchez & Dunning, 2020, Figures 1–3).

1. The subjects’ confidence graph—that of their average self-estimate as a function of
trial number—was non-monotonic. Specifically, the confidence graph was comprised
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of three phases: a beginning phase of increase, an intermediate phase of decrease, and a fi-
nal phase that returned to increase. This pattern agrees with the finding of the well-known
experiment of Kruger and Dunning (1999) on confidence as a function of true ability—as
well as its replications—that the former variable can be a non-monotonic function of the
latter (see Burson et al., 2006, Figures 4–6; Haun et al., 2000, Figures 5–7; and Kruger
& Dunning, 1999, Figures 2–3). This also agrees with the work of Hoffman and Burks
(2020) investigating truckers’ self-estimates of the number of miles driven each week,
which found their average to be non-monotonic with respect to the level of experience
and the average of the true value, monotonically increasing in the level of experience (see
Hoffman & Burks, 2020, Figure 1).

2. The average difference between confidence and the environmental feedback eventu-
ally became positive—signifying overconfidence—and proceeded to increase instead
of decaying to zero. This pattern is consistent with the extensive evidence on overconfi-
dence in the cognitive bias literature: for example, as a cause of wars (Dixon, 1976; John-
son, 2004), stock market bubbles (Akerlof & Shiller, 2009; Scheinkman & Xiong, 2003),
and underpreparation for catastrophes (MacKenzie, 1994; Schlosser, 2013). Consistently
becoming overconfident compared to the environmental feedback, by itself, likely suffices
to contradict Bayesian rationality (Augenblick & Rabin, 2021).

3. The confidence graphs from all variants of the experiment were essentially indistin-
guishable from each other, even though the subjects of each experimental variant on
average performed differently and thus received different environmental feedback.
The confidence graph in essence only depended on the number of past observations, the
level of experience. This pattern is consistent with two well-documented cognitive bi-
ases: underinference (Benjamin, 2019), the tendency to insufficiently update one’s belief
in the direction of new evidence compared to Bayesian inference; and the hard-easy ef-
fect (Lichtenstein & Fischhoff, 1977; Moore & Healy, 2008), the tendency to be over-
confident on difficult tasks and underconfident on easy tasks. Indeed, a predetermined
confidence function—one that depends not on past environmental feedback, but only on
other types of information like one’s level of experience—would generically differ from
the Bayesian aggregate of the past environmental feedback. The difference between the
two would generically persist, manifesting as both underinference and—depending on
the hard-easy effect—either persistent overconfidence or underconfidence.
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These three non-Bayesian patterns robustly replicated in all six variants of the Sanchez–
Dunning experiment (2018, 2020), including the variant that used the incentive-compatible
Becker–DeGroot–Marschak method (Becker et al., 1964) to monetarily incentivize accurate
answers. The non-Bayesian inaccuracy of subjects’ learning (Jansen et al., 2021) and the per-
sistence of this inaccuracy in the face of monetary incentivization (Ehrlinger et al., 2008) have
also been documented in replications of the Kruger–Dunning experiment; these phenomena
have been found in the aforementioned work of Hoffman and Burks (2020) on truckers’ self-
estimates of productivity, as well. Note that the Kruger–Dunning experiment is similar in ob-
jective and design to the Sanchez–Dunning experiment. A crucial difference, however, is that
accurate environmental feedback is immediately provided by the experimenter in the latter, but
not in the former. The Sanchez–Dunning experiment thus compellingly raises the question of
why humans have evolved to underinfer from freely available environmental feedback, even
when meaningfully learning from it is made easy and monetarily advantageous.

How did our evolutionary past select for cognitive biases, traits that systematically cause
errors in judgement? To solve this puzzle, we appeal to cultural evolutionary theory’s exten-
sive body of evidence that humans primarily rely on learning from their fellow group mem-
bers, rather than from the environmental feedback itself (Boyd & Richerson, 1985, 1988,
1995; Cavalli-Sforza & Feldman, 1981; Lew-Levy et al., 2017). This evidence informs and
is informed by a central hypothesis of cultural evolutionary theory: that adaptive, socially
exchanged, and intergenerationally accumulated knowledge—relevant to fitness-relevant tasks
like foraging, reproduction, and warfare—comprised the primary selection pressure acting on
ancestral human cognition (Baimel et al., 2021; Henrich, 2015; Humphrey, 1976; Laland, 2017;
Muthukrishna & Henrich, 2016; Muthukrishna et al., 2018; Reader et al., 2011; Street et al.,
2017; van Schaik & Burkart, 2011; Whiten & van Schaik, 2007).

In this paper, we construct an evolutionary model of human learning based on this cultural-
evolutionary-theoretic hypothesis: one in which an ancestral human learns primarily via knowl-
edge learned from group members, rather than via environmental feedback. The model is con-
structed by modifying a classical Bayesian model of repeated task-learning to veridically repre-
sent the hypothesized setting of social, knowledge-based task-learning. Another key modifica-
tion we add is our assumption that the cognitively constrained agent of our model—representing
an ancestral human learner—faces selection pressures against meaningful retention of high-
variance environmental feedback, due to onerous ecological fitness costs of overcommitting at-
tention (e.g., increased risks from ambushes and accidental injury caused by a lack of situational
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awareness). It follows from this assumption that the confidence function comprising the agent’s
fitness-maximizing strategy is characterized by discrete confidence levels and systematic de-
viations from classical Bayesian inference (i.e., from unbiased incorporation of environmental
feedback), consistent with the empirical finding of Lisi et al. (2021). Specifically, this confi-
dence function is characterized by various cognitive biases like underinference, the hard-easy
effect, and—depending on the parameters of our model—recurrent non-monotonicity.

We begin by describing in Subsection 2.1 a finite-outcome-space version of the classical
Bayesian decision-theoretic model. This general model serves both as an inspiration for our
evolutionary model and as a reductio ad absurdum argument that humans may not learn from
high-variance environmental feedback via classical Bayesian inference. The contradiction is
as follows. Classical Bayesian inference is effective because a Bayesian-updating prior (that
has not a priori ruled out any possibility) is almost surely guaranteed to eventually converge
to the truth: the property of consistency. However, this property is in contradiction with the
aforementioned findings from the cognitive biases literature: first, that a human learner’s prior
(such as that of their ability) can persistently deviate from their past observations; and second,
that it can be recurrently non-monotonic with respect to the number of observations, regardless
of the actual observations themselves.

We then resolve these empirical contradictions by presenting in Subsection 2.2 our evo-
lutionary model: a modification of the classical Bayesian model, adapted to represent the
knowledge-based learning environment of ancestral humans in the context of high-variance
payoff observations. In our modified Bayesian model, the agent learns a task over repeated
attempts, each of which generates a payoff. When the expected cost of retaining high-variance
payoff observations—due to onerous ecological fitness costs from overcommitting attention—is
sufficiently high, the agent’s optimal learning strategy does not update their prior of their payoff-
acquisition ability in the given task (confidence) with respect to the payoff observations. Instead,
the agent updates their confidence as a function of information in the complement of payoff ob-
servations: in our model, knowledge and the speed of learning. The consequent unavailability of
payoff data—the key departure from classical Bayesian decision theory—generates our first de-
sired conclusion: that evolved confidence generically deviates from the past payoff observations
in a recurrent manner. This conclusion is a special case of a more general phenomenon: a given
learning strategy’s systematic departure from classical Bayesian updating when the ancestral
learning environment for which it is ecologically rational differs from the contemporary learn-
ing environment in which it actually operates (Gigerenzer, 2000; Gigerenzer & Todd, 1999;
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McKay & Efferson, 2010). Persistent underinference and the hard-easy effect follow from the
recurrent nature of this evolutionary optimal confidence function.

The second desired conclusion—that this recurrent, evolutionarily optimal confidence func-
tion can be non-monotonic—follows from incorporating the cultural-evolutionary-theoretic hy-
pothesis that the agent’s learning occurs via attempted imitation of a role model. This non-
monotonicity can occur due to a dichotomy between successful imitation learning and de facto

innovation learning: two learning methods whose classification is a priori uncertain to the agent.
The details of this dichotomy and of other aspects of our model are presented in Section 2.

The predictions of this model are then made mathematical precise in the theorem statements
presented in Section 3. The proofs of the theorems can be found in the Appendix.

We thus find that several classes of cognitive biases can be parsimoniously explained as
evolutionary byproducts of the idiosyncratically knowledge-based and social nature of ances-
tral humans’ hypothesized learning environment. Often thought of as structural flaws in hu-
mans’ individual learning, cognitive biases may instead be evolutionarily rooted in two hypoth-
esized characteristics of our ancestral environment: first, the primarily knowledge-based and
social—not individual—nature of human learning in natural settings, as theorized by cultural
evolutionary theory; and second, ecological fitness costs of meaningfully retaining environ-
mental feedback—due to cognitive constraints—and the consequent pressure to rely instead
on setting-specific sources of information, as theorized by the ecological rationality hypothesis
(Gigerenzer, 2000; Gigerenzer & Todd, 1999).

2 The model

2.1 Classical Bayesian model

Suppose that an agent repeatedly attempts a task. Each yields a random payoff that is contained
in a finite set of values S ⊂ R. The finiteness of S constitutes the realistic assumption that the
agent, due to cognitive constraints, categorizes observations into finitely many bins. The payoff
from each task attempt is drawn i.i.d. from a fixed probability distribution ϕ ∈ Φ ⊆ P(S),
which would depend on the agent’s ability to acquire payoffs, the abundance of the environment,
and various other factors. Here, P(S) denotes the set (which can be thought of as a state
space) of all probability distributions on S, and Φ ⊆ P(S) denotes the subset of probability
distributions that may feasibly occur in a given setting.
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For the purpose of maximizing payoff, the agent is incentivized to accurately predict the
expected value of the future task attempt’s payoff. This was likely the case for ancestral human
foragers, who by default engaged repeatedly in a highly specialized foraging role (Hooper et
al., 2015), but also faced incentives to be opportunistic: to accurately appraise—and based on
the result of said appraisal, possibly procure—additional foraging opportunities as they arise
(Bird-David, 1992). We model this dichotomy as follows. We assume that before each task
attempt, the agent has the choice of forgoing a fraction r of the time spent on it (corresponding
to the same fraction of the task attempt’s entire payoff) for a payoff whose value is observed
beforehand. The opportunity-cost payoff is rc, where c drawn from a fixed distribution ψ ∈
P(S) whose support is all of S. It follows that the agent maximizes the immediate payoff by
taking the payoff from the task attempt if its mean rE[ϕ] is greater than rc, take the opportunity
cost if rE[ϕ] is less than rc, and take either option when rE[ϕ] is equal to rc.

The agent thus benefits from accurately estimating the task attempt’s expected payoff E[ϕ].
This can likely be achieved by a small number of observations—even just one—when ϕ has low
variance. Under our assumption that payoffs are observationally categorized by the agent into
finitely many bins, assuming further that the payoffs have low variance amounts to the condition
that nearly all payoffs (i.e., close to probability one) fall in a single bin s ∈ S. Consequently,
the agent can productively use causal inference, in the sense that assuming every future task
attempt will yield the previously observed payoff of swill nearly always be correct. The payoff-
maximizing strategy is to choose the higher value between the task attempt’s expected payoff
rE[ϕ] ≈ rs; and the observed opportunity cost rc.

The discernment of the payoff distribution ϕ—and more specifically, its expected value
E[ϕ]—is more difficult when ϕ has high variance. In this domain, more than one bin in S

occurs with significant probability. Consequently, the agent will in general need to learn from
a large sample size of payoffs in order to asymptotically determine the true state ϕ from the set
of a priori possible states Φ.

Suppose that the true state ϕ is initially drawn from a probability distribution ξ ∈ P(Φ).
Then, Bayes’ theorem states that the probability distribution of ϕ conditional on the previous
payoff observations being s1, s2, . . . , sn is given by

ξs1,...,sn = Bsn ◦ · · · ◦ Bs2 ◦ Bs1(ξ), (1)
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where Bx : P(Φ) → P(Φ) is the Bayes’-rule map

Bx(ω)(θ) =
θ(x)ω(θ)∫

θ̂∈Φ
θ̂(x)ω(θ̂)dθ̂

. (2)

Consequently, the payoff-maximizing choice of whether to forgo part of the task-attempt payoff
is to compare its expected value

r

∫
ϕ∈Φ

E[ϕ] dξs1,...,sn(ϕ) (3)

with the observed opportunity cost rc. In summary, the agent’s evolutionarily optimal strategy
overall is to begin with the prior ξ, update it via the Bayes’ rule map Bs in terms of each task
attempt’s observed payoff s, and decide whether to forgo part of the nth task attempt for an
observed opportunity cost by using the prior ξs1,...,sn−1 at that point in time.

Bayesian inference can be effective even without explicit knowledge of the true distribution
ξ from which the state ϕ is drawn. An obvious obstruction to this effectiveness is Cromwell’s
rule: if a state is not contained in the support of the prior ω, then this will persist in ωs1,...,sn

for any sequence of observations s1, . . . , sn. It turns out that Cromwell’s rule is the only such
obstruction when the outcome space S is finite. Specifically, suppose that the true state ϕ is
contained in the support of the prior ω. Then, as n→ ∞, the nth Bayesian update of ω

ωn = ωs1,...,sn (4)

will converge to the one-point distribution

χϕ(θ) =

1 if θ = ϕ

0 otherwise
(5)

with prior probability one: the property of consistency (Doob, 1949; Freedman, 1963). In other
words, even an agent with a misspecified initial prior—for example, one that evolved in a past
environment with a different distribution of ϕ—will in all likelihood eventually converge to the
true state ϕ, as long as the initial prior is not too restrictive.

The property of consistency yields a practical test to reject the null hypothesis that a given
learner is Bayesian in the classical sense. We can do so if the learner’s prior does not converge
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to the (one-point distribution on the) true state as the number of observations goes to infinity.
A special case of this test is provided by checking whether a learner’s estimate of their ex-
pected payoff-acquisition ability converges to the true expected payoff. Indeed, suppose that
the learner’s prior were updated via classical Bayesian inference while starting from an initial
prior ω that has not ruled out the true state ϕ. Then, with prior probability one, the learner’s
estimate of their expected payoff-acquisition ability∫

θ̂∈Θ
E[θ̂] dωn(θ̂), (6)

would converge to the true expected payoff

E[ϕ] (7)

as the number of observations n goes to infinity. While the true expected payoff (7) is unob-
servable, it will with probability one coincide with the mean of the past payoff data

s1 + · · ·+ sn
n

(8)

as n→ ∞, due to the law of large numbers. We should thus be skeptical of a learner’s Bayesian-
ness if their estimate (6) of their expected payoff-acquisition ability does not appear to converge
to the mean of the past payoff data (8). Note that this practical test for falsifying a learner’s
Bayesianness is not new; it is essentially a corollary of standard Bayesian statistics.

To illustrate, consider a gambler who, over repeated attempts, continues to be mistaken
about the expected value of a fixed probabilistic lottery. They may persistently believe that
the expected payoff from betting their money on a negative-expected-value lottery is positive,
even after gambling on it a large number of times while observing the resulting payoff data.
Then, we can be reasonably certain that the gambler is not, in the classical sense, Bayesian-
updating with respect to their payoff data. We hypothesize that the persistent deviation of the
gambler’s prior from the true state is caused by the high variance of the payoff data. Other
learners who may fail our test for classical Bayesianness include professionals whose priors of
their performance persistently deviate from the true value (Park & Santos-Pinto, 2010; Hoffman
& Burks, 2020), traders and managers who persistently overestimate future returns on their
investments (Barber & Odean, 2001; Malmendier & Tate, 2005), and gymgoers who repeatedly
overpay on membership fees based on persistently overoptimistic priors of their attendance
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rate (DellaVigna & Malmendier, 2006). Such field evidence against the hypothesis that human
learning from high-variance payoff data is classically Bayesian corroborates the extensive lab
evidence of the relevant cognitive biases.

2.2 Evolutionary model of ancestral human learning

To resolve the predictive inadequacies of the classical Bayesian paradigm, we modify it in the
following way. We assume that the agent estimates their payoff-acquisition ability as a function
of task-specific knowledge, and not necessarily of the previously observed payoff data. Our
evolutionary model incorporates two veridical sources of uncertainty which are sufficient to
generate recurrent non-monotonicity. First, tasks vary in difficulty, a value that represents the
total amount of knowledge required to completely learn the task. The agent’s marginal payoff
is a bivariate function of the difficulty value and their current level of knowledge: the subset of
the total knowledge they have learned so far.

Second, tasks vary in the method used to learn the relevant knowledge: imitation and in-
novation. We incorporate into our model the cultural-evolutionary-theoretic finding that the
primary source of an ancestral human’s task-specific knowledge was learning from role models
who were ostensibly proficient in the task—imitation—rather than learning individually from
environmental feedback—innovation (Boyd & Richerson, 1985; Cavalli-Sforza & Feldman,
1981). The superior efficiency of imitation learning, especially in the context of intergenera-
tional knowledge accumulation, is hypothesized to have enabled humans’ unprecedented evo-
lutionary success.

The dichotomy between imitation learning and innovation learning is confusing at first
glance, given that in our model, the student always attempts to imitate a role model. This
dichotomy occurs because the helpfulness of role models in providing a genuinely new path
forward via imitation learning is not guaranteed. A student may successfully learn via imitation
of their role model, as planned. It is also possible that the role model’s ostensible proficiency in
the task does not translate to productive imitation learning, in which case the student learns by de

facto innovation. Specifically, the role model may not actually be providing a new learning path
that the student would not have accessed if they were to instead learn by innovation. In the con-
text of direct teaching, for instance, this may be due either to the method of teaching (a teacher
may use an open-ended or ambiguous teaching method, such as the Socratic method, without
actually guiding students to think in a new way) or to the teacher’s own limitations (which may
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not be discernible to students when their environmental feedback has high variance). It would
be difficult for the student to deduce from high-variance environmental feedback whether their
role model is meaningfully providing them with a new learning path to imitate.

Throughout this paper, the term “task” will denote a student’s package comprised of a re-
peated knowledge-intensive task that produces fitness-aiding payoffs (i.e., foraging for food),
their choice of role model for it, and the learning method by which the student obtains the rel-
evant knowledge: classified into imitation learning and innovation learning. The student’s task
package can be thought of as a pair (j, a) for the type of learning method j ∈ {im, in} with
which the student learns the task from the teacher (where j = im denotes imitation and j = in

denotes innovation) and the difficulty value a ∈ (0,∞) ∪ {∞} of the task.
The difficulty value a ∈ (0,∞) ∪ {∞} of a task denotes the amount a of knowledge the

student needs to completely learn it, given the specifics of the task package (the teacher, the
learning method, and the task itself). A task with the difficulty value a = ∞ represents an
impossible one, in that the specifics of the task prevent the student from learning it to comple-
tion. Suppose the student currently knows b ≤ a of the total amount of knowledge required to
completely learn the task. The values of b and a determine the marginal payoff f(a, b), which
we assume is strictly increasing in b, strictly decreasing in a, and continuously differentiable.
By scaling the marginal payoff values to have minimum 0 and maximum 1, we can suppose that
the function f(a, ·) maps the domain [0, a] to the range [0, 1]. We assume that completely learn-
ing a task guarantees the maximum marginal payoff: f(a, a) = 1 for every a. Moreover, we
assume that impossible tasks—unable to be meaningfully learned—always yield the minimum
marginal payoff: f(∞, b) = 0 for all b.

One example of a marginal payoff function

f : {(a, b) ∈ ((0,∞) ∪ {∞})× [0,∞) : b ≤ a} → [0, 1] (9)

satisfying these conditions is

f(a, b) =

(
b

a

)λ

, (10)

for λ > 0, which is extended to the point at infinity a = ∞ as

f(∞, b) = lim
a→∞

(
b

a

)λ

= 0. (11)
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This family of functions is characterized by polynomial growth in b. Another example of such
a marginal payoff function is

f(a, b) = ζa−b (12)

for ζ ∈ (0, 1), which is also extended to the point at infinity a = ∞ as

f(∞, b) = lim
a→∞

ζa−b = 0. (13)

This family of functions is characterized by exponential growth in b.
We assume that the risk of an infinitely difficult task a = ∞ only exists when j = in. In

the other case of j = im, the learnability of the given task is guaranteed by the teacher already
having learned it completely. However, when j = in, the teacher may not have actually learned
the task completely despite serving as the student’s role model. The lack of guarantee of the
given task’s learnability leads to a nontrivial probability of an unfortunate setting: one in which
the student squanders time on attempting to learn an impossible task from a teacher, one or
both of whom have not yet realized the said impossibility. The exclusivity of unlearnability
to innovation learning can be seen by the comparison between solving an exam problem and
solving a research problem. The former—imitation learning—is guaranteed to complete in
finite time, because the teacher has solved the problem before assigning it as an exam question.
However, the latter—innovation learning—is not guaranteed to complete in finite time. Indeed,
a research problem, by definition, is one that has not yet been solved by anyone, so it may
a priori be impossible to solve. Overall, we assume that the difficulty values of tasks with
learning method j = im are distributed as a regular exponential distribution (i.e., with p.d.f.
µim(a) = ηa log 1

η
for finite a and µim(∞) = 0, where 0 < η < 1), whereas the distribution

of difficulty values of tasks with learning method j = in is assumed instead to have a positive
probability p on a = ∞ (i.e., with p.d.f. µin(a) = (1− p)ηa log 1

η
for finite a and µin(∞) = p).

The overall distribution of tasks (j, a) on

U = {im, in} × ((0,∞) ∪ {∞}) , (14)

defined by the p.d.f.

µ(j, a) =

qµim(a), if j = im,

(1− q)µin(a) if j = in;
(15)

places probability q on the task’s learning type being imitation and 1−q on that being innovation.
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Other than the risk of unlearnability, the second way in which tasks of learning method
j = im differ from those of learning method j = in is in the speed of learning. Regardless of the
learning method, the student learns knowledge in discrete jumps, each following a task attempt.
Let B(t) denote the knowledge level after the tth task attempt, where B(0) = 0, meaning that
the initially naive student has knowledge b = B(0) = 0 of the task when starting out. The
discrete knowledge levels 0 = B(0) < B(1) < · · · are assumed to satisfy limt→∞B(t) = ∞.
The amount of time the tth task attempt takes for the student is assumed to differ between
the two learning types. Let ∆im(t) (respectively, ∆in(t)) denote the amount of time the tth
task attempt takes when engaged in imitation learning (respectively, innovation learning); we
require for both j ∈ {im, in} that limk→∞

∑k
t=1∆j(t) = ∞. Then, we assume that imitation

is (weakly) faster than innovation: that ∆im(t) ≤ ∆in(t) for all t ∈ N. Moreover, we denote by

Tj(i) =
i∑

n=1

∆j(n) (16)

the total amount of time that a task of learning type j occupies until the end of the ith attempt.
With sufficient time in a fixed environment, natural selection is likely to maximize the ob-

jective function (fitness) within the space of feasible policies (fitness landscape). A policy is
defined by a function π : H → A, where A denotes the space of feasible actions;

H = {(O1, A1, . . . , OT−1, AT−1, OT ) : Oi ∈ O, Ai ∈ A, and the history is feasible}, (17)

the space of feasible histories; O, the space of feasible observations; and a history

h = (O1, A1, . . . , OT−1, AT−1, OT ) (18)

is called feasible if its sequence of observations and actions can occur in the model. It remains
to specify the student’s action space A, observation space O, and the objective function V (π)

on the space of policies π.
The student’s objective function V (π) is the expectation of the total payoff. Most of it

comes from the payoffs yielded by the student’s task attempts. Suppose that the student finishes
a task attempt of time length ∆ while at level of knowledge b for a task of difficulty value a.
At time T that ends a learning period, the student obtains an expected payoff proportional to
f(a, b), scaling with the length ∆ of the learning period, and simultaneously accounting for
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exponential time-discounting. The marginal payoff is obtained as a high-variance probabilistic
lottery φ(a, b) ∈ P(S) with expected value E[φ(a, b)] = f(a, b). Specifically, a payoff value s̄
is drawn independently from φ(a, b) to determine the payoff of the task attempt

v(a, b,∆, T ) = s̄

∫ T

T−∆

δtdt, (19)

where δ ∈ (0, 1) denotes the factor of exponential time-discounting. We see that the expected
payoff yielded by the task attempt is

E[v(a, b,∆, T )] = f(a, b)

∫ T

T−∆

δtdt =

f(a,B(i))
∫ T

T−∆
δtdt if b = B(i) < a,∫ T

T−∆
δtdt if b = a,

(20)

Instantaneously after the acquisition of this payoff at time T , the student’s level of knowledge
jumps to the next discrete level of knowledge B(·) or to the maximum level of knowledge a for
the task, whichever is smaller. The expected sum of the student’s task-attempt payoffs over all
time T ∈ [0,∞) is the main component of the student’s objective function V (π).

There are three auxiliary components of the student’s objective function V (π). The first
such component is as follows. After obtaining the payoff of expected value v(a, b,∆, T ), the
student has the option of committing the observed payoff value to memory. Doing so requires
the student to pay an expected cost of −Cretain, which represents various ecological fitness risks
that result from overcommitting attention to the retention of high-variance payoff data. Due to
the exponential time-discounting, the true value of the expected cost as applied to the student’s
objective function V (π) is

− δTCretain, (21)

where T denotes the ending time of the task attempt that has yielded the given payoff.
The second auxiliary component of the student’s objective function V (π) relates to a choice

(described in Subsection 2.1) that the student makes before every task attempt: whether to
allocate a fraction r of the task attempt’s time—and the corresponding fraction of its payoff—to
an alternative foraging opportunity unrelated to the task. Like in the classical Bayesian model of
Subsection 2.1, the marginal payoff s ∈ S of the alternative foraging opportunity is drawn i.i.d.
from a distribution ψ ∈ P(S) and known to the student prior to their decision. If the student
chooses to forgo a fraction of the task attempt’s time for this alternative foraging opportunity,
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their payoff is changed from (19) to

rs

∫ T

T−∆

δtdt+ (1− r)v(a, b,∆, T ) = (rs+ (1− r)s̄)

∫ T

T−∆

δtdt. (22)

These unrelated foraging opportunities allow the student to increase their expected payoff V (π)

strictly above the baseline level provided by the sum of the task-attempt payoffs v(a, b,∆, T ).
Consequently, the student is incentivized to accurately estimate each task-attempt’s payoff—
as best as allowed by their informational constraints—prior to deciding whether to exploit an
unrelated foraging opportunity instead.

The third auxillary component of the student’s objective function V (π) relates to the stu-
dent’s other choice of action. In between task attempts, the student not only chooses whether
to exploit an unrelated foraging opportunity before each task attempt, but also chooses whether
to quit on their current task package for an alternative one. If the student chooses to cut their
losses on a given foraging task and/or their role model for it, they can choose a new task package
(j, a). All of the student’s task packages (j, a), including the initial one and any intermediate
ones assigned after quitting, are drawn i.i.d. from the probability distribution µ defined in (15).

In addition to the option of quitting the current task, the student is also assumed to situation-
ally possess the option of paying a fitness cost to ascertain their current task package’s learning
method j ∈ {im, in}, on which they can base their specific decision. We propose that humans
carry out this ascertainment via a mental experiment to measure the length of time ∆j(t), which
may be sufficient to distinguish the speeds of the two learning methods. Specifically, our as-
sumption that ∆im(t) ≤ ∆in(t) can be divided into two possibilities: ∆im(t) < ∆in(t) and
∆im(t) = ∆in(t). In the case of the former, a time-measurement experiment can identify the
learning type j. In the case of the latter, however, it cannot. Each mental time-measurement
experiment requires the student to pay an expected cost −Cidentify, again due to various ecolog-
ical fitness costs that can result from overloading a cognitively constrained forager’s decision-
making. Due to the exponential time-discounting, the true value of the expected cost as applied
to the student’s objective function V (π) is

− δTCidentify, (23)

where T denotes the ending time of the task attempt during which the time-measurement ex-
periment was performed.
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We have introduced all components of the student’s objective function V (π), as well as all
components of the student’s action space A. Unlike the classical Bayesian model of Subsec-
tion 2.1, our model is characterized by a potential tradeoff between earlier and later payoffs.
In the classical Bayesian model, each of the agent’s actions was only relevant to maximizing
the payoff of the corresponding task attempt, not to any future ones. Thus, the relative weights
of each task attempt’s payoff do not affect the agent’s decision problem. In contrast, in our
model, the student has two actions—quitting the current task and identifying the learning type
via a time-measurement experiment—that reduces payoffs in the short-term for a potential gain
in long-term payoffs. Thus, specifying the relative weights of each task attempt’s payoff is es-
sential for the prescription of the optimal policy π. As is standard, we have set these relative
weights to be exponentially decaying in time, which aids model tractability and captures the
evolutionary fact that earlier payoffs are likelier to be relevant to fitness than later payoffs.

Formally, the student’s actions are of the form

At = (xforgo(t), xidentify(t), xretain(t), xquit(t)), (24)

where
xforgo(t) : S → {true, false} (25)

denotes the choice of whether to forgo a fraction of the tth task attempt’s time to exploiting an
alternative foraging opportunity of a known marginal payoff s ∈ S;

xidentify(t) : S → {true, false} (26)

denotes the choice of whether to pay an expected cost of −Cidentify to identify the learning
type j ∈ {im, in} during the tth task attempt via a time-measurement experiment, given the
alternating foraging opportunity’s previously drawn marginal payoff s;

xretain(t) : S × S → {true, false} (27)

denotes the choice of whether to retain the observation of the tth task attempt’s payoff given
(s, s̄) ∈ S × S, where s is given as above and s̄ denotes the task-specific marginal payoff; and

xquit(t) ∈{K(s, s̄, j, c) : S × (S ∪ {null})× {im, in, null} × {true, false} → {true, false}}
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denotes the choice of whether to quit the current task after the tth task attempt. When the
student has not performed the identification of the learning type j during the current task at-
tempt, xidentify(t) = false, then the value xquit(t) takes the form of a boolean-valued function
K(s, s̄, null, c): a function of the alternative foraging opportunity’s marginal payoff s; of the
task’s yielded marginal payoff s̄ (which may be unretained and thus given by s̄ = null); and
whether or not the level of knowledge has caught up to the task difficulty a, denoted by

c ∈ {true, false}. (28)

If c = true, then we say that learning has completed during this task attempt. In the opposite
case of xidentify(t) = true, xquit(t) takes the form of a boolean-valued function K(s, s̄, j, c) for j ∈
{im, in}, representing the decision whether to quit conditional on the identified learning type
being imitation or innovation, on the payoff observation, and on whether learning has completed
during this task attempt. We also note the feasibility constraint that the value xidentify(t) is
required to satisfy the feasibility constraint that xidentify(t) = true is only possible if ∆im(t) <

∆in(t) rather than ∆im(t) = ∆in(t).
The student’s observations are of the form

Ot = (b(t), xtype(t), xpayoff(t)), (29)

where
b(t) ∈ [0,∞) (30)

denotes the level of knowledge after the tth task attempt;

xpayoff(t) ∈ S ∪ {null} (31)

denotes the student’s observed payoff value (if the payoff observation was not retained, then we
use the denotation “null”); and

xtype(t) ∈ {null, im, in} (32)

denotes whether the student has carried out a mental identification of the learning type during
the tth task attempt (if this is false, then we use the denotation “null”), and if so, whether the
result was imitation (im) or innovation (in).

In summary, Table 1 provides the list of parameters comprising our learning model, and

17

Electronic copy available at: https://ssrn.com/abstract=3754499



Table 2 presents a step-by-step algorithm for the model. The expected payoff of the policy π
(correcting for time-discounting) during the time remaining after a history h is given by

Vh(π) = E

[
∞∑
k=0

((
rxforgo(k)s(k) + (1− rxforgo(k))s̄(k))

)∫ T (k+1)

T (k)

δtdt

− δT (k+1) (Cretainxretain(k) + Cidentifyxidentify(k))

)]
, (33)

where we have abused notation by having s̄(k), s(k), and the choices x□(k) denote the values
of s̄, s, and the choices x· during the kth learning period from the present, letting T (k) denote
the ending time of the kth learning period from the present, and setting the boolean values of
the choices x□(k) to be 0 when false and 1 when true.

Given a choice of parameters, the corresponding model parametrization M can be solved
numerically with dynamic-programming-type methods. However, we instead pursue an analytic
study to demonstrate desired facts about the model that hold more generally, regardless of the
specific choice of parameters. The results of this investigation are documented in Section 3.

3 Results

We denote the space of feasible policies of the model described in Subsection 2.2 by Π. A
policy π is called optimal if it maximizes the expected payoff in the remaining time at any
feasible history h:

π ∈ argmax
π∈Π

Vh(π). (34)

In the followinwg, we obtain results on properties necessarily possessed by any optimal policy
π, which can help simultaneously explain the various empirically documented deviations of
human confidence from a classically Bayesian estimate of past payoff data.

First, if the magnitude Cretain of the expected cost of retaining payoff observations is suffi-
ciently large, then no optimal policy π ever retains payoff observations. This can be seen, for
example, by taking

Cretain >

∫ ∞

0

δtmax(S)dt, (35)

an upper bound—for any time T at which a task attempt ends—to the payoff (accounting for
time-discounting) that can be obtained during the remaining time. The upper bound (35) is
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obtained when the student receives the maximal marginal payoff max(S) for every task, and
does not pay any cost to retaining payoff observations or identifying the task’s learning type. If
Cretain were larger than this maximum possible expected payoff in the remaining time, then the
information yielded by paying a cost of that magnitude would clearly never be worth it.

Throughout this paper, we assume that the magnitude Cretain of the expected cost of “observ-
ing” (in the ecological setting, retaining in memory) payoff data is great enough that the student
does not ever do so: so that the optimal choice xretain(t) is always given by

xretain(t) = false. (36)

This is functionally equivalent to assuming that the payoff data is unavailable to the student.
The second characteristic that an optimal policy π must possess is the following. Every

action π(h) of an optimal policy in response to a history h might as well solely depend on the
information of h relevant to the current task (j, a), and not on the other information (relevant
to the previous tasks); this follows from the assumption that the student’s tasks are statistically
independent. Specifically, the choices of xforgo(t), xidentify(t), and xquit(t) should only depend
on the conditional distribution µcond(h) of the current task’s value (j, a), conditional on the
information contained in the past history h. This information, which allows the student to rule
out (via Bayes’ formula of conditional probability) certain task values (j, a) from the initial
conditional distribution of µ, includes two components. For one thing, if there has been a time-
measurement experiment on the current task, say with result j ∈ {im, in}, then the student can
rule out all task values (j′, a) with j′ ̸= j.

For another, the student’s past sequence of knowledge levels on the task, b(0), b(1), . . . , b(i−
1), allows the student to rule out task values. If the sequence ends in one or more instances of
b = a /∈ {B(i) : i ∈ N}, then the student knows that their level of knowledge b has caught up
to the maximum value a. In other words, all task values (j′, a′) with a′ ̸= a can be ruled out.
However, if the sequence has been completely consistent with the discrete knowledge values
{B(i) : i ∈ N} of the model, then the only task values (j′, a′) that can be ruled out are those
with a′ ≤ b = B(i). (Without loss of generality, we assume that the probability-zero event that
the task difficulty a drawn from µ precisely equals one of the model’s discrete knowledge levels
B(i), rather than falling between them, does not occur.)

Third, in an optimal policy π, every decision xforgo(t) whether to forgo a fraction of a task
attempt’s time for a known marginal payoff of s ∈ S must be of the form described in Subsec-
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tion 2.1: forgo if the task attempt’s expected marginal payoff

E(j,a)⇝µcond(h) [f(a, b)] (37)

is greater than the alternative marginal payoff s, and do not forgo if the latter is greater than
the former (when they are equal, both choices are optimal). In other words, the student should
choose the payoff that is greater in expectation. We call the quantity (37) the expected marginal

payoff function or the confidence function. We propose that the evolutionary pressure to opti-
mally exploit alternative foraging opportunities shaped ancestral humans’ task-specific notion
of confidence to track the task’s expected marginal payoff (37), conditional on both the infor-
mation known so far and the parameters of the ancestral environment.

The task’s expected marginal payoff (37) is a function of the student’s two relevant pieces
of information: their level of knowledge b and their information set on the learning type j
(whether they have ruled out the event {j = im}, the event {j = in}, or neither). Specifically,
the confidence function can be written as ĝ(Eb, Ej) mapping the domain

( {{b = B(i)} : i ∈ N} ∪ {b = a ̸= B(i)})

× {{j = im ruled out}, {j = in ruled out}, {neither j ruled out}} ∋ (Eb, Ej)

to the range of marginal payoffs [0, 1], where Eb denotes the information set regarding the
student’s information on b and Ej , the information set regarding the student’s information on j.
We compute that the confidence function (37) is generally given by

ĝ(Eb, Ej) =



1 if Eb = {b = a ̸= B(i)},

gim(B(i)) if Eb = {b = B(i) < a} and Ej = {j = in ruled out},

gin(B(i)) if Eb = {b = B(i) < a} and Ej = {j = im ruled out},

gu(B(i)) if Eb = {b = B(i) < a} and Ej = {neither j ruled out},

(38)

for

gim(b) =

∫
a>b

f(a, b)dµim(a)∫
a>b

dµim(a)
, (39)

gin(b) =

∫
a>b

f(a, b)dµin(a)∫
a>b

dµin(a)
, (40)
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and

gu(b) =

∫
a>b

f(a, b)dµ̄(a)∫
a>b

dµ̄(a)
, (41)

where µ̄ denotes the probability distribution P ◦ µ : [0,∞) → [0, 1] for the projection map
P (j, a) = a. We call gim, gin, and gu the imitation-learning confidence function, the innovation-

learning confidence function, and the unconditional confidence function, respectively.
Let ρy be a distribution of the form ρy(a) = (1 − y)ηa log 1

η
for finite a and ρy(∞) = y,

where y ∈ [0, 1). Define the generalized confidence function gρy : [0,∞) → [0, 1] by

gρy(b) =

∫
a>b

f(a, b)dρy(a)∫
a>b

dρy(a)
. (42)

Then, we see that
µim = ρ0, µin = ρp, and µ̄ = ρ(1−q)p, (43)

and therefore,

gim(b) = gρ0(b), gin(b) = gρp(b), and gu(b) = gρ(1−q)p
(b). (44)

One can then verify the following fact.

Proposition 1. For any b > 0, the value of the generalized confidence function, gρy(b), is strictly

monotonically decreasing in y. In particular, the innovation-learning confidence function gin(b)

is at most the unconditional confidence function gu(b), which is at most the imitation-learning

confidence function gim(b). Specifically, we have

gin(b) ≤ gu(b) ≤ gim(b), (45)

where the first inequality occurs with equality if and only if q = 0 (or p = 0, if this is allowed);

and the second inequality, if and only if q = 1 (or p = 0, if this is allowed).

In other words, the evolutionarily optimal estimate of confidence at a level of knowledge b
(conditional on learning not yet having completed) is decreasing in the proportion y of unlearn-
able tasks. This is due to the fact that the risk of unlearnability, of the task difficulty a = ∞, has
a reduction effect on the expected marginal payoff. This risk occurs with the highest probability
within the distribution of task difficulties a > b conditional on j = in, occurs with zero proba-
bility within the distribution conditional on j = im, and occurs with an in-between probability
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value within the distribution that is unconditional of the learning type j. Thus, the reduction
effect on the confidence function also falls in this order. This phenomenon is illustrated in the
plots of the three confidence functions for several model parametrizations in Figure 1.

Another consequence of the risk of unlearnability is non-monotonicity. Specifically, we
will show that gim(b) is monotonically increasing in b under a non-restrictive assumption on the
marginal payoff function f(a, b). Note that if all tasks were learned by imitation rather than
innovation (q = 1), then the confidence function (37) is of the form

ĝ(Eb, Ej) =

1 if Eb = {b = a ̸= B(i)},

gim(B(i)) if Eb = {b = B(i)}.
(46)

and consequently, monotonically increasing in the level of experience i. In other words, if
human confidence evolved in an environment where all tasks were learned by imitation, then
we should expect it to be monotonically increasing in the level of knowledge: and thereby, the
level of experience. The empirically documented confidence is non-monotonic in the level of
experience, and thus unlikely to have evolved in such an environment.

On the other hand, we will show that due to the nontrivial risk of unlearnability, the confi-
dence functions gin(b) and gu(b) each decay to zero as b → ∞. This opens up the possibility
for the confidence function (37) to be non-monotonic in the empirically documented way: gen-
eral increase with an intermediate period of decrease with respect to the level of experience.
Whether this non-monotonicity evolves depends on the two remaining actions prescribed by
the student’s optimal policy π: identifying the learning type, xidentify(t); and quitting, xquit(t).

3.1 Imitation learning alone cannot explain non-monotonic confidence

Under reasonable assumptions on the model parameters, whether each of the confidence func-
tions gim(b), gin(b), and gu(b) is monotonic is determined by the presence of the risk of un-
learnable tasks. Since the distribution µim has zero probability on the event {a = ∞}, its
associated confidence function gim(b) is monotonically increasing in b, as long as the payoff
function f(a, b) satisfies the following condition:

Assumption 1. For all m > 0 and a ≥ m, the payoff function f(a, b) satisfies

∂

∂a
f(a, a−m) > 0. (47)
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We argue that Assumption 1 is plausible because a fixed amountm of knowledge constitutes
a larger fraction of the total knowledge of an easy task than a difficult task; consequently, the
argument goes, not knowing it should cause a harsher penalty in the former case. However,
whether this claim generally holds is a question that should be studied empirically. Note that the
assumption is satisfied by the example family of payoff functions (10), but not by the example
family of payoff functions (12). Our aforementioned argument would then suggest that the
former family (polynomial growth) is plausible as the marginal payoff function of ancestral
learning environments, but not the latter family (exponential growth).

On the other hand, since the distributions µin and µ̄ have a positive probability on the event
{a = ∞}, their associated confidence functions gin(b) and gu(b) are non-monotonic. Specifi-
cally, both gin(b) and gu(b) decay to zero for all sufficiently large b. In fact, the functions are
strictly decreasing to zero for all sufficiently large b, as long as the following condition holds.

Assumption 2. As b→ ∞, the payoff function f(a, b) satisfies∫
a>b

∂

∂b
f(a, b)ηada≪ ηb. (48)

Here, the notation F (b) ≪ G(b) denotes the asymptotic condition that F (b)/G(b) → 0 as
the input variable b→ ∞. Note that Assumption 2 is satisfied by the family of payoff functions
(10) for any parameter η ∈ (0, 1).

We summarize the above discussion in the following theorem statement.

Proposition 2. The generalized confidence function gρy satisfies the following:

a) If y = 0, then we have d
db
gρy(b) > 0 for all b ≥ 0, as long as Assumption 1 holds.

b) If 0 < y < 1, then we unconditionally have gρy(b) → 0 as b→ ∞.

c) If 0 < y < 1, then we have d
db
gρy(b) < 0 for all sufficiently large b, as long as Assump-

tion 2 holds.

The expected marginal payoff of a task is monotonically increasing when there is no risk
that the task is unlearnable, as is the case when it is learned by innovation. In other words, since
µim = ρ0, the function gim should be monotonically increasing. However, there is a nontrivial
probability y of unlearnability when the learning type of the task is either uncertain or fully
determined as innovation: µin = ρp and µ̄ = ρ(1−q)p. In this case, the corresponding expected
marginal payoffs (gin and gu, respectively) both eventually monotonically decrease to zero.
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We have plotted in Figure 1 confidence functions of an example model parametrization with
varying marginal payoff function f(a, b), which illustrate the conclusions of Proposition 2. We
note in particular that functions of the form f(a, b) = (b/a)λ—detailed in (10)—satisfy As-
sumption 1. Thus, by Proposition 2(a), any model parametrization with this choice of marginal
payoff function will have a strictly increasing imitation-learning confidence function gim(b).
However, functions of the form f(a, b) = ζa−b—detailed in (12)—do not satisfy Assumption 1,
which opens up the possibility that gim(b) will not be strictly increasing. In fact, we then can
apply the change of variables ā = a− b to see that the imitation-learning confidence function

gim(b) =

(
log 1

η

) ∫
a>b

ζa−bηada(
log 1

η

) ∫
a>b

ηada
=

(
log

1

η

)∫
a>b

ζa−bηa−bda

=

(
log

1

η

)∫ ∞

0

ζ āηādā (49)

is constant with respect to b. Thus, we see that Assumption 1 constitutes a nontrivial necessary
condition for gim(b) to be strictly increasing.

3.2 Analyzing a subfamily of model parametrizations via approximation

We have solved for the optimal choice of xforgo(t), the decision of when to forgo a proportion
of the task payoff for an alternative foraging opportunity. Assuming the policy π always uses
this optimal choice, the only other components of π that can vary are xidentify(t), the decision
whether to perform a time-measurement experiment to identify the learning type j; and xquit(t),
the decision whether to quit. Recall that the only information that is relevant for the optimal
choice of these components is the pair of information sets Eb and Ej regarding the the student’s
current task. We abuse notation by letting

π(Eb, Ej) = (xidentify, xquit) (50)

denote the action of the optimal policy π (omitting the components xretain and xforgo, which have
already been solved previously) at the pair of information sets (Eb, Ej).

We proceed to define a tractable subfamily of parametrizations of our model for which the
optimal estimate of confidence, as a function of the level of experience i, displays the empiri-
cally documented non-monotonicity: general increase with an intermediate period of decrease.
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Whether this non-monotonicity occurs would depend, in general, on the action components
xretain(k) and xforgo(k) of the optimal policy π. Our subfamily of model parametrizations will
be constructed—via approximation—to have the appropriate optimal action components xretain

and xforgo that guarantee the desired non-monotonicity.
Let us fix all choices of model parameters with the exception of the discrete knowledge

jumps {B(i, n) : i ∈ N, i > 0}, the learning period lengths {∆j(i, n) : i ∈ N, i > 0}—
and the corresponding cumulative learning period lengths {Tj(i, n) : i ∈ N, i > 0}—for j ∈
{im, in}, the fraction of time r(n) of task attempts that can be devoted to alternative foraging
opportunities, and the expected cost Cidentify(n) of a time-measurement experiment to identify
the learning type j. This gives a sequence of model parameterizations {M(n)}n∈N varying
with n. We will construct {M (n)}n∈N so that as n → ∞, the imitation-learning knowledge

function and the innovation-learning knowledge function, defined respectively by

Lim,n(t) = B (max{i : Tim(i, n) ≤ t}) (51)

and
Lin,n(t) = B (max{i : Tin(i, n) ≤ t}) , (52)

can be well-approximated by the continuous imitation-learning knowledge function

Lim,∞(t) : [0,∞) → [0,∞), (53)

and the continuous innovation-learning knowledge function

Lin,∞(t) : [0,∞) → [0,∞), (54)

respectively. The knowledge functions Lim,∞(t) and Lin,∞(t) are required to be bijective,
continuous, and piecewise continuously differentiable such that their respective derivatives
d
dt
Lim,∞(t) and d

dt
Lin,∞(t) are positive whenever they are well-defined. We will describe the

context of this continuous approximation in Subsection 3.4.
We now formally define the continuous learning model, a continuous approximation of our

discrete learning model defined in Subsection 2.2. Suppose that instead of obtaining discrete
payoffs at the end of discrete task attempts, the student obtains a flow payoff

δtf(a(t), b(t))dt, (55)
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based on the task difficulty a and the student’s level of knowledge b. The term a(t) denotes the
difficulty level of the task that is being learned at time t, and thus has zero derivative everywhere
except for the discrete set of points of time at which tasks are quit. When a task is quit at time
t, and at the starting time t = 0, a task is drawn i.i.d. from the distribution µ as in the model of
Subsection 2.2; and if t > 0, the term a(t) is updated to the newly drawn task difficulty.

The term b(t) denotes the student’s level of knowledge, and in the continuous learning
model, updates continuously in the amount of time t. Specifically, we have

b(t) =



Lim,∞(t̄) if j = im and Lim,∞(t̄) < a

a if j = im and Lim,∞(t̄) ≥ a

Lin,∞(t̄) if j = in and Lin,∞(t̄) < a

a if j = in and Lin,∞(t̄) ≥ a,

(56)

where
t̄ = t− Tstart(t) (57)

denotes the length of the time period [Tstart(t), t] spent learning the current task (at time t) and

Tstart(t) (58)

denotes the time at which the current task has been drawn.
We further suppose that in the continuous learning model, there is no option to exploit

alternative foraging opportunities. Similarly, we suppose that the learning type of a task is not
information that can be learned by paying a cost. The justification for these assumptions is that
these quantities—the payoff difference due to alternative foraging opportunities and the costs of
identifying the learning type—become negligible as n→ ∞ in the continuous approximation.

Finally, we suppose that the option to quit for an opportunity-cost task satisfies the follow-
ing. For a positive constant β, the student can—when learning has not yet completed—either
quit all tasks (both j = im and j = in) at any level of experience b ∈ (0,∞) without identify-
ing the task type, or quit j = im tasks at a level of experience bim ∈ [β,∞) ∪ {∞} and j = in

tasks at a level of experience bin ≥ [β,∞) ∪ {∞}.
The student’s strategy space in the continuous learning model pertains entirely to quitting,

and is given by
A∞ = Q∞ =

(
((0,∞) ∪∞) ∪ ([β,∞) ∪ {∞})2

)∞
(59)
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for
Q = ((0,∞) ∪∞) ∪ ([β,∞) ∪ {∞})2 . (60)

Here, the first subset (0,∞) denotes the set of quitting strategies b that quit all tasks at any level
of experience b > 0 without identifying the learning type, and the second subset ([β,∞) ∪ {∞})2

denotes the set of quitting strategies (bim, bin) that quit j = im tasks at a level of experience
bim ∈ [β,∞) ∪ {∞} and j = in tasks at a level of experience bin ≥ [β,∞) ∪ {∞}. The action

(b1, b2, . . .) ∈ A∞ (61)

denotes the overall strategy that quits the ith task using the strategy action bi for i ∈ N. The
total payoff in the continuous learning model is given by∫ ∞

0

δtf(a(t), b(t))dt, (62)

where a(t) is the difficulty value of the task being learned at time t (which discretely changes
whenever a new task is drawn), and b(t) is the student’s level of knowledge of this task.

In summary, Table 3 provides the list of parameters comprising our continuous learning
model, and Table 4 provides a step-by-step algorithm for the model. The student’s objective is
to maximize the expected payoff, the expected value of (62):

V∞((b1, b2, . . .)) = E
[∫ ∞

0

δtf(a(t), b(t))dt

]
. (63)

Decision theory yields that the maximal expected payoff V∞ ((b1, b2, . . .)) is obtained by
a strategy that acts in the same way for every history sharing the same information set. In
particular, the maximal payoff is obtained by a strategy that uses the same quitting strategy
b ∈ Q for every drawn task, corresponding to the strategy

(b, b, . . .) ∈ A∞. (64)

The expected total payoff of such a quitting strategy b is given by the function

V∞(b) =

V∞,u(b) if b = b,

V∞,c(bim, bin) if b = (bim, bin).
(65)

27

Electronic copy available at: https://ssrn.com/abstract=3754499



Here, the value function V∞,u(b) is defined by

V∞,u(b) = qVim,∞,u(b) + (1− q)Vin,∞,u(b), (66)

where (Vim,∞,u(b), Vin,∞,u(b)) is the solution to the system of equations

Vim =

∫ b

0

(∫ L−1
im,∞(a)

0

δtf(a, Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt

)
dµim(a)

+

∫
a>b

(∫ L−1
im,∞(b)

0

δtf(a, Lim,∞(t))dt+ δL
−1
im,∞(b)(qVim + (1− q)Vin)

)
dµim(a),

(67)

and

Vin =

∫ b

0

(∫ L−1
in,∞(a)

0

δtf(a, Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt

)
dµin(a)

+

∫
a>b

(∫ L−1
in,∞(b)

0

δtf(a, Lin,∞(t))dt+ δL
−1
in,∞(b)(qVim + (1− q)Vin)

)
dµin(a);

(68)

while the value function V∞,c(bim, bin) is defined by

V∞,c(bim, bin) = qVim,∞,c(bim, bin) + (1− q)Vin,∞,c(bim, bin), (69)

where (Vim,∞,c(bim, bin), Vin,∞,c(bim, bin)) is the solution to the system of equations

Vim =

∫ bim

0

(∫ L−1
im,∞(a)

0

δtf(a, Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt

)
dµim(a)

+

∫
a>bim

(∫ L−1
im,∞(bim)

0

δtf(a, Lim,∞(t))dt+ δL
−1
im,∞(bim)(qVim + (1− q)Vin)

)
dµim(a),

(70)
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and

Vin =

∫ bin

0

(∫ L−1
in,∞(a)

0

δtf(a, Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt

)
dµin(a)

+

∫
a>bin

(∫ L−1
in,∞(bin)

0

δtf(a, Lin,∞(t))dt+ δL
−1
in,∞(bin)(qVim + (1− q)Vin)

)
dµin(a).

(71)

In fact, we can explicitly solve for these value functions.

Lemma 3. The value functions Vim,∞,c, Vin,∞,c, Vim,∞,u, and Vin,∞,u are given by

((Vim,∞,c(bim, bin), Vin,∞,c(bim, bin)) =
(
V̂im(bim, bin), V̂in(bim, bin)

)
(72)

and

((Vim,∞,u(b), Vin,∞,u(b)) =
(
V̂im(b, b), V̂in(b, b)

)
. (73)

Here, the functions V̂im, V̂in : ((0,∞) ∪ {∞})2 → [0,∞) are defined by

V̂im(bim, bin) =
de− bf

g
(74)

and

V̂in(bim, bin) =
af− ce

g
(75)

for

a = 1− qδL
−1
im,∞(bim)ηbim (76)

b = −(1− q)δL
−1
im,∞(bim)ηbim , (77)

c = −qδL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, (78)

d = 1− (1− q)δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, (79)

e =

∫ bim

0

(∫ L−1
im,∞(a)

0

δtf(a, Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt

)
dµim(a)

+

∫
a>bim

(∫ L−1
im,∞(bim)

0

δtf(a, Lim,∞(t))dt

)
dµim(a), (80)
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f =

∫ bin

0

(∫ L−1
in,∞(a)

0

δtf(a, Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt

)
dµin(a)

+

∫
a>bin

(∫ L−1
in,∞(bin)

0

δtf(a, Lin,∞(t))dt

)
dµin(a), (81)

and

g = 1− δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
+ q

(
δL

−1
in,∞(bin)

(
p+ (1− p)ηbin

)
− δL

−1
im,∞(bim)ηbim

)
.

(82)
In particular, we have V∞(bim, bin) = V̂∞(bim, bin) and V∞(b) = V̂∞(b) for

V̂∞ = qV̂im + (1− q)V̂in. (83)

Note that it makes sense to view the space of quitting strategies Q as the domain

Q̄ = {(b, b) : b ∈ (0,∞) ∪ {∞}} ∪ {(bim, bin) : bim, bin ≥ β} ⊂ ([0,∞) ∪∞)2 , (84)

representing the space of strategies that use the same quitting strategy for every task. Note that
the two subsets above nontrivially intersect. This has the meaning that the strategy b = b ≥ β

that quits without identifying the learning type obtains the same payoff as the strategy b = (b, b)

that identifies the learning type before quitting, due to our assumption that the cost of identifying
the learning type limits to zero in the continuous approximation.

We formalize the aforementioned assumptions regarding the approximation of the discrete
learning models M (n) by the continuous learning model M (∞). A sequence of model parametriza-
tions {M (n)}n∈N is said to converge to the continuous model parametrization M (∞) if:

1. The sequence of functions {Lj,n}n>0 monotonically converges (increasing with respect
to n) to Lj,∞ in a way such that Lj,∞(T (i, n)) = B(i, n) for all n and i.

2. The parameters δ, f(a, b), p, q, and η are shared by all {M (n)}n∈N and M(∞).

3. We have ∆im(i, n) = ∆in(i, n) for all i such that B(i, n) < β, and ∆im(i, n) < ∆in(i, n)

for all i such that B(i, n) ≥ β.

4. The parameters r(n) and Cidentify(n) are monotonically decreasing to zero such that

r(n) ≪ Cidentify(n) ≪ 1. (85)
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The first condition constitutes the assumption that the student’s accumulation of knowledge
is sufficiently fine, and thus can be approximated by a continuous knowledge function. The
second condition specifies the shared parameters between the approximated model parametriza-
tions and the approximating continuous learning model. The third condition constitutes the as-
sumption that the speeds of imitation and innovation are too similar to distinguish in the early
stages of learning (b < β), but branch off so that they become distinguishable in the later
stages (b ≥ β). This branch-off can occur, for example, if the respective speeds of learning
increase over time—as they did in the experimental variant of Sanchez and Dunning (2020) that
measured learning speeds—such that the rate of increase is faster for imitation than it is for in-
novation. And finally, the fourth condition represents the assumption that the additional payoffs
from alternative foraging opportunities are negligible compared to the ecological fitness cost of
identifying a given task’s learning type, which is negligible compared to task payoffs.

This notion of convergence is key to our approach of continuous approximation. Recall
that the optimal payoff of our original discrete learning model is achieved by a policy π whose
choice of action π(h) is the same for all histories of the same pair of information sets (Eb, Ej).
For such a policy π, define

iidentify = min{i : π({b = B(i)}, {neither j ruled out yet}) = (true, xquit)}, (86)

the level of experience at which the learning type j is identified. If the policy π (conditional on
learning not having completed) quits earlier than iidentify, say at level of experience

iquit,u = min{i < iidentify : π({b = B(i)}, {neither j ruled out yet}) = (false, true)}, (87)

then we say that the quitting strategy of π is representable by b = B(iquit,u). If the policy π
(conditional on learning not having completed) quits at or later than iidentify, then we define

iquit,im = min{i ≥ iidentify : π({b = B(i)}, {j = in ruled out}) = (false, true)}, (88)

and

iquit,in = min{i ≥ iidentify : π({b = B(i)}, {j = im ruled out}) = (false, true)}, (89)

which denote the earliest levels of experience i ≥ iidentify at which tasks of learning type j are
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quit (conditional on learning not having completed). Then, we say that the quitting strategy of
π is representable by b = (B(iquit,im), B(iquit,in)).

Assuming these conditions hold, we have the following approximation result:

Proposition 4. Suppose we have a sequence of model parametrizations {M (n)}n∈N that con-

verges to the continuous learning model M(∞). Let Vn denote the payoff function correspond-

ing to M (n). For every ε > 0, there exists N sufficiently large that for all n ≥ N , we have

|Vn(π)− V∞(b(π))| < ε (90)

whenever π is representable as b(π).

The intuition is that since the magnitude of the cost of identifying the learning type Cidentify

is negligible compare to the main term, and the additional payoffs from alternative foraging
opportunities are even more negligible, the main term of the payoff Vn(π)—comprised of pay-
offs obtained from the task—will asymptotically dominate. In the proof of Proposition 4, we
will construct a function V̂n(bim, bin) that can represent this main term. A key step in the proof
that the inequality (90) holds will be that the constructed function with b placed in both inputs,
V̂n(b, b), is continuous at b = 0, and that the same holds for V̂∞(b, b). This allows us to apply
Dini’s theorem that for a sequence of continuous functions on a compact space that mono-
tonically converges to another continuous function on the compact space, the convergence is
uniform. Dini’s theorem, a tool we will use several times in this paper, is the reason we have
defined the notion of convergence of model parametrizations M (n) in terms of monotonic con-
vergence of the knowledge functions Lj,n.

Through Proposition 4, we have essentially reduced the problem of studying the action
components xidentify and xquit in sufficiently fine model parametrizations M(n) to looking at
the analogous problem in the continuous approximation M (∞). We proceed to analyze the
latter in the following subsections to gain an insight on the optimal choice of whether to quit
the status-quo task in a sufficiently fine model parametrization M (n), i.e., with n sufficiently
large. The advantage of studying the continuous learning model M (∞) is that it is significantly
more tractable. For it, we can obtain quite general results about the optimal quitting strategy
b, which can manifest in the evolutionarily optimal estimate of confidence in the approximated
model parametrizations M (n).
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3.3 Dichotomy of quitting strategies based on the learning type

We begin by proving that tasks that are known to be learned by imitation are never optimally quit
in the continuous learning model, as long as Assumption 1 holds and the knowledge function
Lim,∞(t) is convex. The intuition is the following. First, the optimal expected marginal payoff
is increasing in the level of knowledge when the task is known to be learned by imitation,
due to Assumption 1. Second, tasks learned by imitation are learned at least as fast at higher
levels of knowledge, by the assumption of the convexity of Lim,∞(t). Finally, tasks learned by
innovation in expectation yield less payoff than tasks learned by imitation. Thus, quitting at any
level of knowledge b > 0 has three negative effects on expected payoff—reducing the expected
marginal payoff, slowing down learning, and replacing the current imitation-learning task with
an on-expectation inferior innovation-learning task—and is thus suboptimal.

Proposition 5. In a continuous learning model, every b = (bim, bin) that maximizes the payoff

V∞(b) must have bim = ∞, as long as Assumption 1 holds and the imitation-learning knowl-

edge function Lim,∞(t) is convex.

As a result, the problem of finding the quitting strategy b = (bim, bin) that maximizes the
value function V∞,c(bim, bin) becomes a one-dimensional maximization problem

max
bin∈[β,∞)∪{∞}

V∞,c(∞, bin). (91)

Note that the convexity of a knowledge function Lj,∞(t) constitutes the assumption that
knowledge-learning is (weakly) faster in its later stages. If true, this may reflect a dynamic
where potential advances in task-specific knowledge are limited by the amount of previously
held knowledge, so that such advances are more likely to arise from the substantial knowledge
base in the late stages of learning than from the lacking knowledge base in the early stages
of learning. However, the opposite assumption of a concave knowledge function Lj,∞(t), the
assumption that knowledge-learning is (weakly) faster in its earlier stages, is also plausible. If
true, this may reflect a dynamic where there are more “low-hanging fruits” in the early stages of
learning than in the late stages. Empirical studies can help quantitatively investigate aspects of
knowledge accumulation as a function of time: in particular, which of the two aforementioned
dynamics dominates at any given stage of learning.

Next, we prove an unconditional result: that tasks known to be either learned by innovation
or of ambiguous learning type are always optimally quit at an intermediate level of knowledge.
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Proposition 6. In a continuous learning model, every b = (bim, bin) that maximizes the value

function V∞(b) satisfies bin <∞. Also, every b = b ∈ (0,∞) ∪ {∞} that maximizes the value

of the function V∞(b) satisfies b <∞.

The intuition is that these tasks, in contrast to tasks known to be learned by imitation, come
with a risk of unlearnability that asymptotically dominates as the level of knowledge becomes
sufficiently high. As a result, conditional on learning not yet having completed, the expected
payoff from staying the course asymptotically decays to the point of being overtaken by that
yielded by switching to an opportunity-cost task.

3.4 Implications for the evolutionarily optimal estimate of confidence

Consider the evolutionarily optimal estimate of confidence ĝ(Eb, Ej), defined in (38), for a
model parametrization M (n) for a sufficiently large n. Unlike in the continuous limit M (∞),
the model parametrization M (n) is characterized by alternative foraging opportunities, whose
exploitation factors into the payoff function Vn(π). Thus, the student in the model M (n) is
predicted to evolve the optimal estimate of confidence ĝ(Eb, Ej).

The possible values of confidence as a function of the level of knowledge b (conditional on
learning not having completed yet, b < a) are gim(b), gin(b), and gu(b). Under Assumption 1
and the assumption that the imitation-learning knowledge function Lim,∞(t) is convex, tasks
learned by imitation are never quit. Consequently, there are two possibilities for how a payoff-
maximizing strategy b in the approximating continuous learning model M (∞) will learn tasks.

The first possibility, corresponding to the case that b = b′, is that tasks are learned until
a level of knowledge b′ and quit if learning has not completed by then. In this case, the opti-
mal estimate of confidence ĝ(Eb, Ej), conditional on b < a, is given by gu(b) for b < b′, and
tasks are never learned to a higher level of knowledge than b′. This conclusion seems empiri-
cally untenable for two reasons. First, there are many instances of human learning of tasks that
continues on to high levels of experience and knowledge without quitting. Second, the func-
tion gu(b) has been shown in Proposition 2 to eventually decay to zero for b sufficiently high,
which contradicts the empirical pattern that confidence is generally increasing in the level of
experience (albeit with an intermediate period of decrease).

The second possibility, corresponding to the case that b = (∞, bim) for bim ∈ [β,∞), is that
tasks are learned until a level of knowledge bim, at which point tasks of innovation-learning type
are quit if learning has not completed by then and tasks of imitation-learning type are learned to
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completion. Recall that we have assumed that the additional payoff obtainable from alternative
foraging opportunities, which scale with r, is negligible compared to the cost of identifying the
learning type −Cidentify. A consequence of this assumption is that in the limit n → ∞, the only
possible upside of identifying the learning type is to enable differentiated choices pertaining
to quitting that differ between the two learning types. Moreover, the negligibility of the cost
−Cidentify in comparison to payoffs from the task necessitate that this cost is paid at the latest
possible time which allows for the optimal such differentiated quitting strategy to be played:
specifically, during the task attempt iidentify for which bim = B(iidentify, n) is payoff-maximizing
among the possible quitting points {B(i, n)}n∈N,n>0.

Because of this, when the strategy of the form b = (∞, bim) is used, the optimal estimate
of confidence ĝ(Eb, Ej), conditional on b < a, is given by gu(b) for b < bim and by gim(b) for
b ≥ bim. Since gu(b) eventually decays to zero and gim(b) is monotonically increasing, their
piecewise combination (conditional on learning not yet having completed),

g(b) =

gu(b) if b ≤ bin,

gim(b) if b > bin,
(92)

can be non-monotonic in the empirically observed way: generally increasing with an interme-
diate period of decrease.

In order for the evolutionarily optimal estimate of confidence ĝ(Eb, Ej) to be empirically
tenable, the payoff-maximizing strategy seems to need to be of the form b = (∞, bim), and not
b = b. To show the plausibility of the former possibility, we construct model parameters p (the
proportion of unlearnable tasks among all tasks learned by innovation) and q (the proportion of
tasks learned by imitation among all tasks) for which this is true. We do this by showing that
both p and q can be taken sufficiently small in our continuous learning model M (∞) so that
any strategy maximizing V∞(b) among the subset of strategies of the form b = b quits at an
arbitrarily late level of knowledge b. In particular, this can be done so that b is at least β, at
which point we can appeal to Proposition 5 to see that the best strategy of the form b = b is
suboptimal in the overall set of strategies Q̄. Depending on the choice of model parameters (e.g.,
see Figure 2), the decreasing behavior at the tail end of the component function gu(b) can be
captured in the piecewise function g(b), where it is followed by the monotonic increase of the
component function gim(b). Thus, it is theoretically plausible that the evolutionarily optimal
estimate of confidence conditional on learning not yet having completed, g(b), is generally
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increasing with an intermediate period of decrease.

Corollary 7. Suppose Assumption 1 holds and the imitation-learning knowledge functionLim,∞(t)

is convex. In the continuous learning model, fix all parameter choices except those of p and q.

For every γ ≥ 0, there exist choice of p and q such that the following simultaneously hold.

a) Any quitting strategy b = (∞, bin) maximizing V∞ must satisfy

bin > γ. (93)

b) Any quitting strategy b = b maximizing V∞(b) (where we include the limiting strategy

b = b→ 0 in the domain) must satisfy

b > γ. (94)

To prove this, we will use the following lemma, a comparative-statics result which is also of
independent interest. It is comprised of two intuitive facts. First, the payoff value is decreasing
in the proportion p of unlearnable tasks among those learned by innovation, which makes sense
because unlearnable tasks yield the minimum possible payoff. Second, the payoff value is
increasing in the proportion q of tasks learned by imitation, which makes sense because these
tasks on expectation yield higher payoffs than those learned by innovation.

Lemma 8. For any fixed (bim, bin) ∈ Q̄ ∪ {(0, 0)}, the following are true.

a) We have
∂

∂p
V̂∞(bim, bin) ≤ 0, (95)

with equality if and only if q = 1.

b) If Assumption 1 holds and the imitation-learning knowledge function Lim,∞(t) is convex,

then we have
∂

∂q
V̂∞(∞, bin) > 0. (96)

3.5 An example showing the plausibility of non-monotonic confidence

We conclude by constructing a family of model parametrizations {M (n)}n∈N whose approxi-
mating continuous learning model M (∞) can be used to show that the confidence function g(b)
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that evolves in a sufficiently fine model parametrization M(n) can plausibly be non-monotonic
in the desired way: general increase with an intermediate period of decrease. The choice of
parameters for M (n) is presented in Table 5. Then, the family of model parametrizations
{M(n)}n∈N is approximable by the continuous learning model M(∞), which has knowledge
functions Lim,n(t) and Lin,n(t) that are determined—by the values ∆j(i, n) and B(i, n)—to be

Lim,∞(t) =

t if t < 2,

2(t− 1) if t ≥ 2,
(97)

which is convex; and
Lin,∞(t) = t. (98)

Also, the threshold for learning-type identification is determined—by the values ∆j(i, n)—to be
β = 2. Moreover, all other parameters are shared with the model parametrizations M (n). Plots
relevant to the family {M (n)}n∈N and its approximating continuous learning model M (∞)

are shown in Figure 2.
We use Mathematica 12.2’s NMaximize function to find a local-maximizing, potentially

global-maximizing quitting strategy b = (∞, bim) ∈ Q̄ for bim ≈ 5.32. That the quitting
strategy b = (∞, bim) is local-maximizing and ostensibly global-maximizing is illustrated in
Figure 2(f)’s plot of the global-maximum candidates V∞(b) for b < 2 and V∞(∞, b) for b ≥ 2,
within the domain 0 ≤ b ≤ 100. Thus, it is plausible that the quitting strategy b = (∞, bim)

evolves, and consequently, that b = bim is the cutoff point for the (limiting) piecewise-defined
confidence function g(b) that is optimal when using the quitting strategy b = (∞, bim). As
shown in Figure 2(d), this cutoff point makes the confidence function g(b) is non-monotonic in
the desired way: general increase with an intermediate period of decrease. By Proposition 4,
this type of non-monotonic pattern will manifest in the corresponding confidence functions g(b)
of the model parametrizations M(n) for sufficiently large n, thereby illustrating via example
the theoretical plausibility of this pattern’s evolution.

4 Discussion

Classical Bayesian models are often used to represent task-learning over repeated attempts, each
of which yields an observable payoff (e.g., Savage, 1972). In this paper, we have described a
practical test for rejecting the null hypothesis that a learner is meaningfully learning from their

37

Electronic copy available at: https://ssrn.com/abstract=3754499



environmental feedback in the sense of classical Bayesian updating. The test—essentially a
corollary of standard Bayesian statistics—is to check whether the learner’s estimate of their
expected payoff-acquisition ability is converging to the mean of the past payoff data.

However, there is extensive empirical evidence of people’s persistent failures to meaning-
fully learn from high-variance environmental feedback. This manifests in cognitive biases like
underinference, the hard-easy effect, and recurrently non-monotonic confidence. Our test thus
suggests that we should consider rejecting the null hypothesis that humans by default meaning-
fully learn (in the sense of classical Bayesian updating) from high-variance payoff data. Indeed,
the version of the classical Bayesian model we have presented in Subsection 2.1 is specialized
to repeated task-learning and incorporates the realistic assumption that a cognitive biological
agent bins observations into finitely many bins. Under this assumption, tasks that yield low-
variance payoff data are easily learned via deterministic causal inference, because it is likely
that nearly all payoff data will fall in a single observational bin. However, learning tasks that
yield high-variance payoff data requires a large number of observations for classical Bayesian
inference to reliably learn the true state. Overcommitting attention to meaningfully retain a large
number of high-variance observations could result in onerous ecological fitness costs, which we
hypothesize is the causal mechanism behind the proposed non-selection of classically Bayesian
learning strategies in settings of high-variance payoff data.

Next, we have modified the classical Bayesian model to represent ancestral humans’ learn-
ing environment in a way that can evolutionary explain the puzzling predictive inadequacies
of classical Bayesian updating models (when applied to humans). When the ecological fitness
cost of retaining payoff data is high, the optimal strategy does not retain them, in contrast to the
Bayesian principle that free information should always be taken. The optimal strategy then in-
stead relies on setting-specific sources of information, as theorized by the ecological rationality
hypothesis. The informational setting of ancestral human learning is hypothesized by cultural
evolutionary theory to be one where social learning of task-specific knowledge is paramount.

Our modified Bayesian model seeks to represent this hypothesized learning environment.
In it, a student attempts to learn a fitness-relevant task via attempted imitation of a role model,
with the option of switching between tasks and role models (between task packages). The
main term of the student’s payoff function is comprised of payoffs yielded by task attempts,
which are obtained in the form of high-variance probabilistic lotteries and thus unfeasible to
meaningfully retain. However, the payoff function also has a secondary term comprised of the
ecological fitness cost of identifying the learning type (we hypothesize that this is accomplished
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via a mental time-measurement experiment to distinguish learning speeds), as well as a tertiary
term comprised of additional payoffs obtained by devoting a fraction of a task attempt’s time to
opportunistically exploiting alternative foraging opportunities instead.

Optimal exploitation of alternative foraging opportunities requires an accurate estimate of
the task’s expected marginal payoff conditional on the known information, which—in our hy-
pothesized domain of high-variance, difficult-to-retain payoff data—is comprised of the task’s
learning type, if known (successful imitation versus de facto innovation); and their level of
knowledge on the task. This evolutionarily optimal estimate of the expected marginal payoff—
of the student’s confidence at the task—is a piecewise function of their level of experience,
whose piecewise cutoff point is determined by the optimal point at which tasks learned by de

facto innovation are quit. In order for this confidence function to not be always monotonically
increasing, it is necessary (as long as Assumption 1 holds) that not all attempted imitation learn-
ing is successful: that a positive proportion of tasks are learned instead via de facto innovation.

Moreover, we demonstrate that this confidence function can be non-monotonic in the specif-
ically desired way: general increase with an intermediate period of decrease. This specific non-
monotonic pattern, which we have demonstrated for a tractable subfamily of model parametriza-
tions, arises because of the following interplay. Learning via de facto innovation while attempt-
ing to imitate a role model is not guaranteed to complete in finite time, because the task may
be unlearnable. On the other hand, this risk does not exist when the student learns from au-
thentically imitating a role model, since conditional on the imitation being authentic, the role
model must have successfully learned the task beforehand. The student’s optimal estimate of the
task’s expected marginal payoff (confidence) is monotonically increasing in the level of knowl-
edge when it is guaranteed to be learnable in finite time, but eventually decays to zero when
it may instead be impossibly difficult. We thus hypothesize that the evolutionarily optimal es-
timate of the expected marginal payoff can be non-monotonic due to its piecewise definition.
The increasing, then decreasing portion of the expected marginal payoff function is conditional
on the fact that the task may be unlearnable. The final increasing portion is conditional on hav-
ing ruled out the risk of unlearnability, because the tasks to which this risk is exclusive—those
learned by innovation—should optimally be quit at an intermediate level of knowledge.

In short, we hypothesize that the desired pattern of recurrent non-monotonicity evolved due
to a particular interplay between the ecologically rational estimate of task-specific confidence
and the ecologically rational strategy of task/role-model turnover. A necessary condition for
this interplay is the dichotomy between tasks learned by imitation (for which the risk of un-

39

Electronic copy available at: https://ssrn.com/abstract=3754499



learnability does not occur) and those learned by innovation (for which it does).
We emphasize that the aforementioned subfamily of model parametrizations was specif-

ically constructed to demonstrate the theoretical plausibility of the desired non-monotonicity
in an analytically tractable subset of the family of all parametrizations of our model. We an-
ticipate that the full subset of model parametrizations whose evolutionary optimal estimate of
confidence is recurrently non-monotonic in the desired way will be larger.

We are agnostic about the precise combination of adaptive and biological mechanisms by
which the ecologically rational strategy (of task-payoff estimation and task/role-model turnover)
in an environment of social task-specific learning was achieved. Plausible adaptive mechanisms
relevant to this strategy include genetic evolution and contemporary, likely social learning.
Given that people often fail to adapt their decision-making to settings of unambiguous indi-
vidual learning with zero ecological fitness costs of retaining payoff data—such as those of the
experiments of Sanchez and Dunning (2018, 2020)—we propose that genetic evolution plays
at least a partial role in the sense of the ecological rationality hypothesis. On the other hand,
cultural evolutionary theory implies that contemporary social learning may also play at least a
partial role, especially given the sheer variation of relevant parameters among the myriad envi-
ronments and groups humans have inhabited and moved between. The biological mechanisms
through which ecologically rational strategies of social task-learning are implemented are likely
neurological, but may also be partly hormonal. Future research on both the adaptive and the bi-
ological mechanisms relevant to strategies of task-payoff estimation, task/role-model turnover,
and other aspects of social task-learning would potentially be fruitful.

4.1 Implications

Our model proposes to help explain in an interwoven way two related topics: the evolutionary
explanation of cognitive biases, and of why people underuse high-variance environmental feed-
back in the selection of role models. It does so by incorporating—into the general framework
of Bayesian decision theory—the cultural-evolutionary-theoretic hypothesis that the primary in-
formational setting of ancestral human learning was the social learning of task-specific knowl-
edge; as well as the insight of the ecological rationality hypothesis that the method by which
biological cognitive agents learn from information is constrained in a setting-specific manner,
such as by their ancestral environments’ ecological fitness costs of overcomitting attention.

First, our model demonstrates the evolutionarily plausibility of empirically robust cogni-
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tive biases regarding confidence, and informs us of potentially useful necessary conditions and
sufficient conditions for these patterns to evolve.

1. Task-specific confidence can persistently deviate from the environmental feedback, in a
way that conforms to the hard-easy effect. This requires that the ecological fitness cost of
retaining payoff data is nonzero, and is guaranteed to occur if the cost is sufficiently high.

2. Task-specific confidence can be recurrently non-monotonic in the desired way: general
increase with an intermediate period of decrease. This requires (as long as Assumption 1
holds) that a positive proportion of attempted imitation learning is unknowingly imple-
mented as de facto innovation learning, and is guaranteed to occur in our constructed
subfamily of model parametrizations.

In the course of producing these desired conclusions while aiming to maintain model parsimony,
our work has identified a relatively short list of environmental parameters that are potentially
key to predicting certain aspects (i.e., task-specific confidence and strategies of task/role-model
turnover) of descriptive human learning of a high-variance-payoff task over repeated attempts.

Also, our model augments our understanding of how role-model-selection strategies that
persistently fail to meaningfully learn from certain environmental feedback evolved. Cultural
evolutionary theory hypothesizes that once some capacity for cultural transmission evolved, nat-
ural selection would have favored increasingly effective strategies for cultural learning (Henrich,
2015). In this hypothesis, ancestral humans somehow achieved the threshold level of cultural-
learning capacity at which cumulative cultural evolution becomes the primary selection pressure
acting on cognition. After crossing this threshold, ancestral humans with a better-than-average
capacity for cultural learning would have been favored by natural selection, which would then
further amplify cumulative cultural evolution. Thus, gene-culture coevolution caused an au-
tocatalytic cycle of more effective cultural-learning strategies and greater cumulative cultural
evolution. A hypothesized example of such an effective cultural-learning strategy is selective
social learning: the strategy of learning from preferentially chosen role models who are likely
to possess better-than-average knowledge (Boyd & Richerson, 1985).

However, empirical studies have uncovered what at first appear to be surprising suboptimal-
ities for the role-model selection strategies that humans have actually evolved. For example,
students are substantially inaccurate in assessing the help provided by their teachers (Insler et
al., 2021; Weinberg et al., 2009). Also, people are persistently vulnerable to maladaptive ad-
vice from role models (de Francesco, 1939; Uscinski et al., 2016; Gladwell, 2019), such as
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that regarding female genital cutting (Jones et al., 1999; Wagner, 2015), funerary cannibal-
ism (Lindenbaum, 2001), unfounded shamanistic predictions (Singh, 2018), membership in an
exploitative cult (Galanter, 1989), and medical pseudoscience (Scheirer, 2020). This body of
evidence begs a question: why did ancestral humans evolve to not meaningfully learn from
certain environmental observations relevant to the accurate assessment of role-model quality?
One might presume that an informationally rational social learner would base their role-model
selection on the payoff data of potential role models, and on the learner’s own payoff data in the
process of imitating a given role model.

Our theory contributes to explaining this phenomenon by specializing the ecological-rationality
framework (in our setting, by incorporating high ecological fitness costs of retaining environ-
mental observations) to not only the estimation of task-specific payoffs, but also the selection
of tasks/role models. Specifically, in our model, these ecological fitness costs can cause role-
model-selection strategies (in our model, task/role-model turnover strategies which determine
when to quit the status-quo task package for a new one) based on retaining such observations
to be informationally inefficient. Classically Bayesian-rational strategies, such as those of role-
model selection, are much more likely to be suboptimal when environmental observations oc-
cur with high variance. Also, our model proposes explicit mechanisms by which ancestral
humans—even in the absence of feasibly retainable environmental feedback—could still have
plausibly evolved on-average selective role-model-selection strategies which relied instead on
setting-specific sources of information (e.g., the student’s level of knowledge and their speed of
learning). By hypothesizing precisely how people’s ostensibly suboptimal role-model-selection
strategies may actually be potentially ecologically rational, our model adds to cultural evolu-
tionary theory’s understanding of its hypothesized on-average selective social learning.

To corroborate the hypothesis that humans achieved on-average selective social learning
even for high-variance-payoff tasks, our work highlights the importance of identifying and in-
vestigating the relevant mechanisms of selective social learning, which would need to be robust
in the face of high ecological fitness costs of overcommitting attention. One such mechanism,
hypothesized by our model, is the potential dependence of task/role-model turnover strategies
on setting-specific information, which can inform turnover even in the absence of retained en-
vironmental feedback. Another example of such a mechanism is the conformist or reputation-
based nature of human role-model-selection strategies (Cavalli-Sforza & Feldman, 1981; Boyd
& Richerson, 1985; Henrich, 2009). To illustrate, descriptive human role-model-selections rely
at least partially on granting prestige status to role models based on popularity rather than on
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the relevant environmental feedback (Henrich & Gil-White, 2001).
These two mechanisms—reliance on setting-specific information and conformist role-model-

selection strategies—are not competing explanations for on-average selective social learning in
settings of high-variance environmental feedback. In fact, the latter mechanism may require
the former, because in order for conformist role-model-selection strategies to facilitate selec-
tive social learning in the absence of environmental feedback, the prestige status granted to a
popular role model may need to have had incorporated other helpful information at some point
in the past. If this information could not feasibly have been environmental feedback, then it
must have been setting-specific information in the complement of environmental feedback. Our
theory proposes that the student’s level of knowledge and their speed of learning can provide
such setting-specific information to achieve an on-average selective strategy of task/role-model
choice, even when retaining environmental feedback is unfeasible.

Regardless of whether our model is a good model of ancestral humans’ learning environ-
ment, our test for verifying whether a learner is meaningfully incorporating their environmental
observations into their decision-making—in the sense of classical Bayesian inference—may be
general enough to have various potential applications. To illustrate, public-policy plans are of-
ten aimed at least partially at improving societal well-being. Arguably, the dominant paradigm
with which this goal is approached is the assumption that each person’s decisions (e.g., the price
they are willing to pay or take for an item) reveal an informationally rational aggregate of their
private observations relevant to their well-being (e.g., Harberger, 1971). Policymakers thus aim
to economize on the cost of gathering copious, potentially idiosyncratic information by rely-
ing on each person’s purported aggregate of their individual observations encapsulated by their
decisions. The reliability of this information-gathering strategy is determined by whether each
person is actually aggregating their observations in an informationally rational way.

However, as we have seen above, an extensive body of empirical evidence suggests that this
assumption of informational rationality may not hold true when the relevant observations oc-
cur with high variance. Moreover, we have demonstrated the plausible ecological rationality of
empirically robust cognitive biases by constructing an evolutionary model of social learning of
task-specific knowledge, hypothesized by cultural evolutionary theory to be the primary mode
of ancestral human learning. Our work thus contributes to raising the following research ques-
tion: in which situations do public-policy plans aimed at improving societal well-being under
the assumption of people’s informational rationality actually succeed in doing so? It also begs a
potentially important follow-up question: can public-policy plans be improved by replacing the
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assumption of informational rationality with the more empirically tenable assumption of eco-
logical rationality? Domains of high-variance payoff data, such as gambling, may potentially
be better served by the latter assumption over the former.

Another preliminary point is that informational rationality may not be an unattainable goal
for human cognition. The decision-making of a person who is both trained in statistical meth-
ods and has the habit of applying this training to their own observations may be informationally
rational. It may thus be fruitful not only to question the default assumption of people’s informa-
tional rationality, but also to explore the potential upside of practical statistics training: such as
the habit of keeping track of the mean past payoff data, as implied by our test for informational
rationality. This statistical skill can be both a possible remedy to the potentially detrimental
misassumption of informational rationality, and a facilitator of improved judgement and role-
model selection at the individual level. One potential such benefit is dissuading people from
socially learning the practice of repeated gambling on negative-expected-value lotteries.

4.2 Model limitations and directions for generalization

Our model is almost certainly an oversimplification of descriptive social task-learning, which
in general involves extremely complex social dynamics. We non-exhaustively list several ways
in which this is the case. We also note potential remedies, in the form of potential directions
for generalization. Thereby generalizing our model may potentially enable it to better represent
descriptive social task-learning and thereby better explain the relevant empirical data. We thus
propose our model as a barebones representation of social, knowledge-based task learning, on
which more sophisticated variants can potentially be built in the future (assuming, of course,
that the thrust of the model’s story is essentially correct).

First, our model’s conclusion that the student retains no information from payoff data is
oversimplified. Realistically, people can plausibly retain easy-to-remember aspects of their past
payoff data, which may include the maximum and minimum payoff values observed so far.
People may also temporarily retain a small number of recent payoff data, even when they fail to
draw on more distant past data that a Bayesian-updating belief would incorporate. The realistic
assumption that a small number of recent payoff observations may inform decision-making can
account for additional empirically documented patterns in descriptive human learning, such as
reinforcement learning (Nax & Perc, 2015).

Also, our model’s assumption that knowledge affects decision-making through a unidimen-
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sional quantification—the level of knowledge b—is an oversimplification. There is no reason
to believe that knowledge is unidimensional, an assumption we have used for the sole sake of
tractably showing the evolutionary plausibility of recurrently non-monotonic confidence. In
fact, given the sheer multifaceted nature of knowledge, we hypothesize that knowledge in gen-
eral should affect decision-making through a more faithful, multidimensional quantification.

Moreover, our model’s two-dimensional spectrum of task packages—assumed in our model
to be comprised of a unidimensional knowledge-based difficulty level and a binary learning
type—is an oversimplification. First, as we have noted above, knowledge is likely experienced
as a multidimensional quantity, which makes it likely that a unidimensional knowledge-based
classification of tasks is an oversimplification. Second, when a student attempts to learn from
a role model, their method of learning would in general be placed somewhere on the spectrum
between full imitation and full innovation. Third, our two-dimensional spectrum is unlikely
to capture all the relevant variations in the task-learning process; idiosyncrasies of the task
itself, of how the student learns, of how the teacher imparts (or ostensibly imparts) knowledge,
and of the degree to which learning is student-directed as opposed to role-model-directed (for
example, whether the student seeks out the role model for a task they already had in mind)
may also influence the learning process. In particular, potentially consequential quantities like
the speed of learning may vary with respect to characteristics of the task package that are not
captured by this two-dimensional parametrization.

Finally, our model’s assumption that task packages are drawn i.i.d. from a fixed probability
distribution is an oversimplification. For one thing, the i.i.d. assumption on our model—added
for the sake of tractability—ignores the likely correlations between different task packages due
to similarities in either the teachers or the underlying tasks. For another, descriptive selec-
tion of tasks/role models is not well-modeled by an i.i.d. draw from a fixed distribution; it is
better described as an intrinsically social process that involves dynamically occurring interac-
tions between other students and other potential role models, such as via conformist role-model
selection strategies (e.g., prestige status). Such a multi-agent interaction would need to be
modeled by a complex game-theoretic model, rather than a comparatively tractable Bayesian
decision-theoretic model (which can be solved by dynamic-programming-type methods under
quite non-restrictive conditions). Regardless, only a model in the former formulation could
veridically represent the relevant social dynamics, such as coordination and punishment.
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4.3 Empirical tests

We sketch an empirical program to study descriptive human learning in the formulation of our
theory. One of the primary goals of such a program would be the eventual corroboration or falsi-
fication of the theory itself. However, the program—by pursuing theoretical formulation—may
also potentially yield other advances in the psychological sciences’ understanding of descrip-
tive human learning and decision-making, especially since the field is arguably held back by a
shortage of theoretical formulation at the moment (Muthukrishna & Henrich, 2019).

First, we propose the empirical estimation of the true parameters of various social task-
learning environments. Several parameters which we have proposed to be evolutionarily rele-
vant include the proportion of attempted imitation that is successful, the proportion of unlearn-
able tasks among those that are learned by unsuccessful imitation (de facto innovation learning),
the speed of each type of learning, ecological fitness costs of various action choices, and the
situation-specific marginal payoff from a task. Empirical studies of how these parameters var-
ied across both ancestral and contemporary human learning environments, as well as studies
of whether they can predict the respective evolution of task-specific confidence and strategies
of task/role-model turnover, would potentially contribute to a more robust and granular under-
standing of human cognition. Such studies would also allow us to test whether our model can
veridically represent ancestral and contemporary human learning environments.

Estimates of such model parameters in ancestral environments would often be necessarily
crude, given the general lack of archaeological and other relevant forms of evidence. As a start,
one may feasibly expect ancestral humans who lived in areas where food is complicated to
obtain (e.g., tundra)—when compared to those who lived in areas with easy food availability
(e.g., rainforests)—to either have a generally lower-valued payoff function, a task difficulty dis-
tribution biased towards higher difficulty values, or a greater probability of unlearnable tasks.
Empirical studies can then test whether these hypothesized parameter differences in the ances-
tral environments affect strategies of task-payoff estimation and task/role-model turnover in the
ways predicted by our model, such as Proposition 1’s prediction that task-specific confidence
(conditional on learning not yet having completed) decreases in the proportion of unlearnable
tasks. Such efforts, however, may be inevitably limited, due to the multitude and granular
variation of the model parameters, the difficulty of measuring many of them for ancestral en-
vironments, and the uncertainty in whether ecologically rational social task-learning strategies
were selected via genetic evolution.

More immediately promising would be applying such efforts to investigating the social task-
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learning of evolutionarily relevant foragers whose lifestyles are hypothesized to be faithful con-
tinuations of their ancestors’, such as the Hadza people (Marlowe, 2010; Lew-Levy et al., 2021).
Such efforts will not be confounded by our current uncertainty in whether the adaptive mech-
anism by which ecologically rational social task-learning strategies were selected was genetic
evolution or contemporary learning. We propose empirical studies of the social task-learning
of such peoples as a potentially fruitful first step in testing whether our model (or a sufficient
generalization) is a good model of descriptive human learning. If the answer to this question
is affirmative, empirical researchers can proceed to study learning environments with granu-
lar variations in model parameters, genetic-evolutionary background, and cultural-evolutionary
background. Doing so may further corroborate or potentially falsify our model, determine the
role of genetic evolution and contemporary learning in the selection of its ecological rational
strategies, and investigate the scientific consequences of any such findings.

For instance, suppose that our model is a good model of descriptive human learning, and that
the adaptive mechanism by which its ecologically rational strategies were selected was at least
partially genetic evolution. Then, our model may provide a way in which otherwise mysterious
aspects of ancestral human learning environments can be studied indirectly: via empirical stud-
ies (of task-specific confidence and task/role-model turnover) investigating people living today.
Specifically, empirical data of these psychological aspects—which are comparatively easy to
obtain—can narrow down the feasible region of model parametrizations that can evolutionarily
explain the data of such studies. This would then potentially inform us of characteristics of the
respective ancestral human learning environments that would otherwise be difficult to discern.
On the other hand, suppose that the adaptive mechanism by which the model’s ecologically
rational strategies were selected was at least partially contemporary cultural learning. Then,
our model may similarly enable certain aspects of a cultural group’s social task-learning envi-
ronment to yield consequences about certain aspects of their decision-making, and vice versa.
Such a bridge between different objects of study can increase the number of ways we can study
each, and thereby contribute to a more comprehensive literature on human cognition.

It is evident that in all lines of inquiry described above, empirical data from contemporary
people’s learning (including, but not limited to social task-specific learning) could be crucial.
Such data can be obtained from lab studies and field studies of the relevant psychological as-
pects. A prediction of our theory is that these psychological aspects may be evolutionarily
affected by independent variables that are specific to social, knowledge-based learning and not
to individual learning: even when in ostensibly unambiguous settings of individual learning
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with costless environmental feedback. Therefore, it may be potentially beneficial for empirical
studies of these psychological aspects—even in domains of individual learning—to keep track
of potentially social-learning-specific independent variables like the level of knowledge, the
speed of learning, and whether the method of learning is imitation or innovation.

Another prediction is that two psychological aspects in particular—task-specific confidence
and task/role-model turnover—are evolutionarily related. We thus propose that they should be
studied concurrently. In particular, empirical studies should look for our theory’s hypothesized,
potentially discernable piecewise cutoff point (a “phase transition”) in the student’s task-specific
confidence, which should exist and coincide with the identification of the learning type. They
should then investigate precisely when this cutoff point—as well as task/role-model turnover—
occurs, which should vary with respect to whether the student’s learning method is authentic
imitation or de facto innovation in ways that are elucidated by our model.

Lab studies would do well to incorporate the excellent experimental design of Sanchez and
Dunning (2018, 2020), which is effective at studying task-specific confidence over the course
of learning a high-variance-outcome task over repeated attempts. To arrive at the setting of
our model, the Sanchez–Dunning experimental design could be modified to represent an unam-
biguous setting of task-specific learning via attempted imitation. Ideally, this modified design
would achieve a dichotomy between successful imitation and de facto innovation (e.g., by hav-
ing some role models teach via the Socratic method, and other role models provide actually
helpful knowledge: but not to the point of trivializing task learning), include unlearnable tasks
(e.g., by having payoffs of unlearnable tasks occur with full randomness that cannot ever be
predicted), grant the option of drawing a new task and/or role model, and—just as in the orig-
inal experiment—offer an incentive-compatible reward. Such an experimental design could
then essentially be a parametrization of our learning environment, albeit an artificial one and
not an ancestral one. These artificial model parameters, the genetic and cultural-evolutionary
background of the experimental subjects, and other potentially relevant treatment effects (inde-
pendent variables) can then be varied across studies to test the quantitative predictions of our
theory regarding task-specific confidence and task/role-model turnover.

Also, on top of such an artificial model parametrization, empirical researchers could add
other hypothesized cultural-evolutionary-theoretic mechanisms that would endow its learning
environment with an unambiguously social context. Key examples of such mechanisms include
a nontrivial amount of choice in the selection of new tasks and/or role models, the ability to
observe the number of other students that have chosen each task/role model, and the ability to
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exchange information with other students and role models. The inclusion and veridical rep-
resentation of such mechanisms could be key to investigating cultural-evolutionary-theoretic
dynamics that are not fully captured in a decision-theoretic setting such as that of our model.

In addition, empirical researchers could pursue field research of social task-specific learn-
ing, especially pertaining to tasks with high-variance payoffs. In contrast to the lab research
proposed above, field research would allow for a more veridical representation of social task-
specific learning, at the potential expense of experimental controls and granular variation of the
independent variables. Doing such field studies in a manner that comprehensively measures all
data relevant to our model would be undoubtedly challenging, given that it may need to keep
track of every student and role model’s interactions, respective levels of experience, respective
speeds of learning, respective payoff data, and—if technologically feasible—informative mea-
surements of knowledge. Even if all such data were collected, there may additionally need to
be some degree of nontrivial inference from the data to discern certain model parameters: for
example, which packages of tasks and role models were learned via successful imitation rather
than de facto innovation. Future advances towards improving and widening the collected data
in such field studies would potentially help on these fronts.

In both field studies and lab studies investigating descriptive social learning of high-variance-
payoff tasks, empirical researchers would do well to take into account the sheer diversity in po-
tential subjects’ psychological profiles and treatment effects, which should ideally be recorded
as comprehensively as possible in order to keep track of all potential independent variables
(Yarkoni, 2020). In fact, consider the following two hypotheses. First, subjects who are most
likely to be studied by lab research—individuals of Western, Educated, Industrialized, Rich,
and Democratic (WEIRD) societies—are in important ways psychological outliers relative to
the rest of the human population (Henrich et al., 2010). Second, much of the genus homo’s two-
million-year existence was spent in the non-WEIRD lifestyle of mobile foragers (Townsend,
2018). A consequence is that a comprehensive understanding of descriptive human learning
may require studying the social task-learning of mobile foragers whose lifestyles are faithful
continuations of their ancestors’: and studying that of non-WEIRD peoples in general. To their
credit, field studies are already doing so extensively (e.g., Kline et al., 2013; Lew-Levy et al.,
2017, 2021; Lew-Levy & Boyette, 2018; Salali et al., 2019, 2016; Schniter et al., 2015). It may
potentially be fruitful to have more of the relevant lab studies, such as the Sanchez–Dunning
experimental design (2018, 2020), to also be targeted at individuals of non-WEIRD societies.

Empirical tests of our model’s assumptions themselves would be potentially valuable for
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the purpose of assessing whether it is a good model of ancestral learning environments. The
program to investigate whether social task-learning comprised the primary selection pressure
of ancestral human learning is not new. It is a vibrant line of inquiry that constitutes the cen-
ter of the debate between cultural evolutionary theory and its competing hypotheses (Baimel
et al., 2021), whose resolution has potential implications for other debates: like that regard-
ing the hypothesized evolution of moral, norm-based preferences (Capraro & Perc, 2021). Our
model contributes new insights that can add to this program. Most notably, it demonstrates
that cultural evolutionary theory can explain otherwise puzzling cognitive biases like recur-
rently non-monotonic confidence. The fact that descriptive human learning is thereby cogni-
tively biased—even in unambiguous settings of individual learning with costless environmental
feedback—grants plausibility to cultural evolutionary theory’s hypothesis that the primary se-
lection pressure on ancestral human cognition was social, knowledge-based task-learning.

Also, our model identifies several potentially relevant mechanisms in a hypothesized learn-
ing environment of social, knowledge-based task-learning: for example, the classification of
attempted imitation learning into successful imitation and de facto imitation learning, as well
as the risk of an unlearnable task in the case of the latter. In particular, it explicitly posits
the predictive importance of ecological fitness costs of overcommitting attention, which deter-
mine whether the evolutionarily optimal strategy of selective role-model selection meaningfully
learns from the relevant payoff data. Our model’s formalization of these parameters can aug-
ment empirical assessments of cultural evolutionary theory by informing a potentially fruitful
avenue of research: specifically, the estimation of these parameters for various, potentially an-
cestral learning environments; combined with an investigation of cultural evolutionary theory’s
relevant predictions and of the degree to which these predictions hold. One such prediction from
our model (and suitable generalizations of it) would be that when the ecological fitness cost of
retaining payoff data is sufficiently high, the optimal strategy of task/role-model turnover would
not retain it, and instead rely on other sources of information that are specific to the hypothe-
sized setting of social, knowledge-based task-learning.

A stronger claim of our theory is that the costly cognitive mechanism by which ances-
tral humans distinguished successful imitation from de facto innovation was a mental time-
measurement experiment, to distinguish their respective learning speeds. Our hypothesized
existence of such mental time-measurement experiments is a special case of the generally the-
orized mental evidence-sampling process preceding a decision (e.g., Pleskac & Busemeyer,
2010). Empirical tests of our assumption that the speed of imitation is faster than that of inno-
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vation, as well as of our assumption that human learners can and do differentiate between the
two speeds via mental time-measurement, could help probe the plausibility of our theory.

Other plausible hypotheses for the cognitive mechanism by which the student differentiates
between imitation and innovation include a costly-to-observe signal effused by the teacher, or
one effused by the accumulated task-specific knowledge at any given point of time. Our model
can be suitably modified to use such an alternative hypothesis for this cognitive mechanism. In
fact, incorporating such an alternative hypothesis would make the model considerably simpler,
since it would not need to consider variation in learning speeds. However, a disadvantage
of such an alternative hypothesis is that empirically testing it may be less straightforward, at
least without relying on neuroscientific methods. We have thus not pursued these alternatively
hypothesized mechanisms in the present paper, although we do not rule their veracity out and
hope that they may be feasibly testable in the future.

More generally, it may be plausible that future developments in our neuroscientific knowl-
edge will enable a detailed mechanistic understanding of descriptive human learning. While
remarkable empirical advances have been made on this front, our current level of neuroscien-
tific understanding has a long way to go, given the extreme complexity of human cognition and
the relative adolescence of the field of neuroscience. However, our sketches of potential em-
pirical studies demonstrate that even at our currently limited level of understanding of descrip-
tive human learning, substantive progress—towards testing our theory and in general—may be
plausible. Moreover, evolutionary-theoretic hypotheses like those of our model can inform the
design, data collection, and analyses of such empirical studies, and thereby partially compen-
sate for the preliminary nature of the current neuroscientific literature. Given the immediate and
far-reaching upside of a comprehensive understanding of descriptive human decision-making,
we propose that the eventual benefits of a cumulative program of research working towards this
goal (even prior to a full neuroscientific understanding) may outweigh the costs.
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Model parameters of the modified Bayesian model

1. the marginal payoff distribution φ(a, b) ∈ P(S) and its expected value f(a, b), for every
a ∈ (0,∞) ∪ {∞} and finite 0 ≤ b ≤ a,

2. the discrete knowledge jumps {B(i) : i ∈ N, i > 0},
3. the learning period lengths {∆j(i) : i ∈ N, i > 0} for j ∈ {im, in},
4. the exponential discount factor δ of time,
5. the proportion p of infinite-difficulty tasks among all innovation-learning tasks,
6. the proportion q of imitation-learning tasks among all tasks,
7. the exponential discount factor η of the distribution of task difficulty values,
8. the fraction of time r of task attempts that can be devoted to alternative foraging oppor-

tunities,
9. the distribution ψ ∈ P(S) of the marginal payoffs of alternative foraging opportunities,

10. the expected cost −Cretain of retaining a payoff observation, and
11. the expected cost −Cidentify of a mental time-measurement experiment to identify the

learning type j.

Table 1. List of model parameters of the Bayesian model modified to represent ancestral
human learning, presented in Subsection 2.2. These model parameters are required to satisfy
the conditions discussed earlier in this subsection.
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Algorithmic description of the modified Bayesian model

1. The student draws from the distribution µ the task (j, a), the value of which is unknown
to them. The attempt number specific to the task, i, is set to zero, and their level of
knowledge b is set to zero. The time value T is set to zero.

2. The student carries out the ith attempt of the current task, which constitutes the following.
• First, the student draws from the distribution ψ a random marginal payoff s ∈ S

whose value is known to them, and decide whether to forgo a fraction r of the task
attempt for this alternative marginal payoff.

• Second, the student decide whether to pay an expected cost −Cidentify for a time-
measurement experiment to identify ∆j(i), which is only possible if ∆im(i) <
∆in(i) rather than ∆im(i) = ∆in(i).

• Third, they spend the time ∆j(i) on the task attempt (T is incremented by this
amount), at the end of which they receive a payoff of{

δT (rs+ (1− r)s̄)
∫ ∆j(i)

0
δtdt if the student had decided to forgo,

δT s̄
∫ ∆j(i)

0
δtdt otherwise,

(99)

where s̄ ∈ S is drawn from the distribution φ(a, b). The student chooses whether to
retain the observation s̄ of the payoff value.

• Fourth, if the student had performed a time-measurement experiment during this
learning attempt, then they learn the value ∆j(i) and thereby, the learning type j.

• Fifth, b discretely jumps to the next level—B(i+1) or a, whichever is smaller—and
the index i is incremented by one.

• Finally, the student chooses whether to quit the current task. If so, they draw a new
task (j, a) from µ (independently with respect to the previously drawn tasks), b is
set to zero, and i is set to zero. Otherwise, they continue to learn the task attempt at
the new level of experience i+ 1.

3. Step 2 is infinitely repeated.

Table 2. An algorithmic description of the Bayesian model modified to represent ancestral
human learning, presented in Subsection 2.2.
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Model parameters of the continuous learning model

1. the marginal payoff function f(a, b),
2. the imitation-learning knowledge function Lim,∞(t),
3. the innovation-learning knowledge function Lin,∞(t),
4. the exponential discount factor δ of time,
5. the proportion p of infinite-difficulty tasks among all innovation-learning tasks,
6. the proportion q of imitation-learning tasks among all tasks,
7. the exponential discount factor η of the distribution of task difficulty values,
8. the constant β constraining the student’s quitting.

Table 3. List of model parameters of the continuous learning model, which approximates our
modified Bayesian model of ancestral human learning. The continuous learning model is
presented in Subsection 3.2.
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Algorithmic description of the continuous learning model

1. Time is set to T = 0.
2. The student draws from the distribution µ the task (j, a), the value of which is unknown

to them.
3. If the student’s quitting strategy is b = b, then they receive a payoff of∫ T+L−1

j,∞(b)

T

δtf(a, Lj,∞(t))dt, (100)

and T is incremented by L−1
j,∞(b). If the student’s quitting strategy is b = (bim, bin), then

they receive a payoff of ∫ T+L−1
j,∞(bj)

T

δtf(a, Lj,∞(t))dt. (101)

and time is incremented by L−1
j,∞(bj).

4. If T = ∞, the algorithm is complete. If T is finite, return to Step 2 and repeat it along
with the following steps.

Table 4. An algorithmic description of the continuous learning model, which approximates
our modified Bayesian model of ancestral human learning. The continuous learning model is
presented in Subsection 3.2.
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Example family of model parametrizations M (n) of the modified Bayesian model

1. The time-discount factor is δ = 0.9.
2. The marginal payoff function is f(a, b) = b/a.
3. The proportion of unlearnable tasks among those learned by innovation is p = 0.01.
4. The proportion of tasks that are learned by imitation is q = 0.01.
5. The decay factor of task difficulty values is η = 0.5.
6. The learning period lengths are given by

∆im(i, n) =

{
2

n+1
if i < n+ 1,

1
n+1

if i ≥ n+ 1,
(102)

and
∆in(i, n) =

2

n+ 1
. (103)

7. The knowledge jump values are given by B(i, n) = 2i
n+1

.
8. The expected cost of a time-measurement experiment to identify the learning type is

−Cidentify for Cidentify =
1

n+1
.

9. The fraction of time of task attempts that can be devoted to alternative foraging opportu-
nities is given by r = e−(n+1).

10. The distribution ψ of the marginal payoffs of alternative foraging opportunities is arbi-
trary.

11. The distributions φ(a, b) can be arbitrarily chosen, as long as we have E[φ(a, b)] =
f(a, b).

12. As we have assumed throughout the paper, the expected cost of retaining a payoff ob-
servation, −Cretain, has sufficiently high magnitude Cretain so that payoff data are never
retained: e.g., large enough so that the inequality (35) holds.

Table 5. An example family of parametrizations M(n) of our modified Bayesian model of
ancestral human learning. The continuous learning model approximating this family, M (∞),
is characterized by a non-monotonic confidence function (see Figure 2). It follows that for
sufficiently large n, the evolutionarily optimal confidence function of the model
parametrization M(n) is also non-monotonic.
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(a) (b) (c)

Figure 1. The imitation-learning confidence function gim(b), the innovation-learning
confidence function gin(b), and the unconditional confidence function gu(b) for model
parameter choices p = 0.4, q = 0.5, η = 0.6, and varying payoff function f(a, b); note that the
other model parameters do not affect these confidence functions. Consistent with
Proposition 1, we have the inequalities gin(b) < gu(b) < gim(b). Also, consistent with
Proposition 2(a), when the payoff function f(a, b) satisfies Assumption 1—panels (a) and
(b)—the imitation-learning confidence function gim(b) is strictly increasing. The payoff
function of panel (c) does not satisfy Assumption 1. As a result, the corresponding
imitation-learning confidence function gim(b) is not necessarily strictly increasing (in fact, it is
constant). Finally, consistent with Proposition 2(b), the confidence functions gin(b) and gu(b)
are eventually decaying to zero.
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(a)

(b)

(c)

(d)

(e) (f)

Figure 2. Plots of quantities relevant to the family of model parametrizations {M (n)}n∈N and
the approximating continuous learning model M (∞), presented in Table 5. Panel (a) plots the
knowledge functions Lim,∞(t) and Lin,∞(t) of M(∞), panel (b) shows how Lim,∞(t)
approximates the imitation-learning knowledge functions Lim,n(t) of M (n) (n = 3 is
pictured), panel (c) shows how Lin,∞(t) approximates the imitation-learning knowledge
functions Lin,n(t) of M (n) (n = 3 is pictured), panel (d) plots the evolutionarily optimal
estimate of confidence g(b) (conditional on learning not yet having completed) in M (∞),
panel (e) plots the payoff V∞(b) of the quitting strategy b = (∞, b) for b ≥ β, and panel (f)
increases the domain and additionally plots the payoff V∞(b) of the quitting strategy b = b for
b < β. The value of the local-maximizing (in fact, ostensibly global-maximizing) value
bin ≈ 5.32 is such that the confidence function g(b) when using the quitting strategy
b = (∞, bin) is non-monotonic in the desired way: general increase with an intermediate
period of decrease.
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Appendix A Proofs

A.1 Proof of Proposition 1

Note that

gρy(b) =
(1− y)

(
log 1

η

) ∫∞
b
f(a, b)ηada

y + (1− y)
(
log 1

η

) ∫∞
b
ηada

(104)

=

(
log 1

η

) ∫∞
b
f(a, b)ηada

y
1−y

+
(
log 1

η

) ∫∞
b
ηada

. (105)

Recall that η ∈ (0, 1), and that f(·, b) is a continuous, non-negative function satisfying
f(b, b) = 1. It follows that the integral

w =

(
log

1

η

)∫ ∞

b

f(a, b)ηada (106)

is strictly positive, since we can find a positive-measure subset [b, b+ ε] ⊂ [b,∞) on which the
integrand (

log
1

η

)
f(a, b)ηa (107)

is lower-bounded by a positive constant close to f(b, b)ηb = ηb. Also, the integral

z =

(
log

1

η

)∫ ∞

b

ηada (108)

is strictly positive.
Check that

∂

∂y
gρy(b) =

∂

∂y

w
y

1−y
+ z

=
−w 1

(1−y)2(
y

1−y
+ z
)2 = − w

(y + z(1− y))2
< 0, (109)

as desired. In particular, gρy(b) is strictly monotonically decreasing in y, which yields the
inequalities (45) as a corollary.
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A.2 Proof of Proposition 2

To show part (a), we check that
d

db
gρ0(b) (110)

is positive. First, we apply a change of variables to obtain

gρ0(b) =

(
log 1

η

) ∫∞
b
f(a, b)ηada(

log 1
η

) ∫∞
b
ηada

=

(
log 1

η

) ∫∞
b
f(a, b)ηada

ηb

=

(
log

1

η

)∫ ∞

b

f(a, b)ηa−bda

=

(
log

1

η

)∫ ∞

0

f(b+m, b)ηmdm. (111)

This equality can also be deduced from the memorylessness property of the exponential distri-
bution ρ0,

ρ0(a) =

(
log

1

η

)
ηa. (112)

Then, we differentiate the expression (111) with respect to b by Leibniz’s integral rule,
which yields

d

db
gρ0(b) =

d

db

((
log

1

η

)∫ ∞

0

f(b+m, b)ηmdm

)
=

(
log

1

η

)∫ ∞

0

(
∂

∂b
f(b+m, b)

)
ηmdm. (113)

Recall that η ∈ (0, 1), and that ∂
∂b
f(b+m, b) > 0 by Assumption 1. Thus, the expression (113)

is an integral of a positive and continuous function(
log

1

η

)(
∂

∂b
f(b+m, b)

)
ηm (114)

over [0,∞). Just as in Appendix A.1, we can find a positive-measure subset of [0,∞) on which
the integrand is lower-bounded by a positive constant. Thus, the integral (113) is positive, as
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desired.
To show part (b), observe that

gρy(b) =

∫
a

f(a, b)dρcond,a>b
y (a), (115)

where ρcond,a>b
y (a) denotes the conditional distribution of ρy conditional on a > b. Its p.d.f. is

given by

ρcond,a>b
y (a) =

ρy(a)∫
a>b

dρy(a)
for a > b. (116)

Observe that the conditional distribution ρcond,a>b
y places probability

ρcond,a>b
y (∞) =

ρcond,a>b
y (∞)∫

a>b
dρcond,a>b

y (a)
=

y

y +
(
log 1

η

)
ηb

→ 1 (117)

on a = ∞ as b→ ∞. Equivalently, ρcond,a>b
y places probability converging to zero on the subset

of finite difficulty values, (b,∞), as b → ∞. Since f(∞, b) = 0, we can apply the dominated
convergence theorem to conclude that

0 ≤ lim
b→∞

gρy(b) = lim
b→∞

(∫
a∈(0,∞)

f(a, b)dρcond,a>b
y (a) + 0 · ρcond,a>b

y (∞)

)
≤ lim

b→∞

∫
a∈(0,∞)

dρcond,a>b
y (a)

=

∫
a∈(0,∞)

lim
b→∞

dρcond,a>b
y (a) =

∫
a∈(0,∞)

0 da = 0,

where we have set ρcond,a>b
y (a) = 0 for a ≤ b. Thus, we have the desired equality

lim
b→∞

gρy(b) = 0. (118)

To show part (c), we use the quotient rule and Leibniz’s integral rule:

d

db
gρy(b) =

d

db

(1− y)
(
log 1

η

) ∫∞
b
f(a, b)ηada

y + (1− y)ηb

=
1

(y + (1− y)ηb)2
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·

((
y + (1− y)ηb

)
(1− y)

(
log

1

η

)(
−ηb +

∫ ∞

b

∂

∂b
f(a, b)ηada

)

− (1− y)

(
log

1

η

)
ηb(1− y)

(
log

1

η

)∫ ∞

b

f(a, b)ηada

)
.

(119)

Assumption 2 implies that that

− ηb +

∫ ∞

b

∂

∂b
f(a, b)ηada, (120)

and thereby the entire expression (119) for d
db
gρy(b), is negative for all sufficiently large b, as

desired.

A.3 Proof of Lemma 3

The proof of this lemma solely uses the fact that the unique solutionV̂im(bim, bin)
V̂in(bim, bin)

 (121)

to a nondegenerate system of equationsa b

c d

V̂im(bim, bin)
V̂in(bim, bin)

 =

e
f

 . (122)

is given by  de−bf
ad−bc

af−ce
ad−bc

 . (123)

Substituting the suitable expressions for the quantities a, b, c, d, e, and f completes our proof.
Note that

g = ad− bc. (124)
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A.4 Proof of Proposition 4

ChooseN large enough that the expected payoff deviation due to the procurement of alternative
foraging opportunities in the model parametrization M (n) is less than ε/3 for all n ≥ N . By
possibly making N larger, the expected payoff deviation due to time-measurement experiments
in the model parametrization M(n) is also less than ε/3.

Furthermore, by possibly making N even larger, the difference between the expected to-
tal payoff Vn(π) in the model parametrization M (n)—henceforward excluding deviations due
to side opportunities and time-measurement costs—and that of its approximating continuous
learning model M (∞), given by V∞(b(π)), is less than ε/3 for all n ≥ N . To show this, we
may as well assume that the task payoff of each learning period (say, the kth one) of the model
parametrization M(n), given by

f(a(k), b(k))

∫ T (k+1)

T (k)

δtdt, (125)

is obtained as a flow payoff of
δtf(a(k), b(k))dt. (126)

We then define the function

V̂n(bim, bin) = qV̂im,n + (1− q)V̂in,n (127)

in terms of the function V̂im,n, V̂in,n : ((0,∞) ∪ {∞})2 → [0,∞), defined by

V̂im,n(bim, bin) =
dnen − bnfn

gn
(128)

and
V̂in,n(bim, bin) =

anfn − cnen
gn

(129)

for
an = 1− qδL

−1
im,∞(bim)ηbim (130)

bn = −(1− q)δL
−1
im,∞(bim)ηbim , (131)

cn = −qδL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, (132)

dn = 1− (1− q)δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, (133)

71

Electronic copy available at: https://ssrn.com/abstract=3754499



en =

∫ bim

0

(∫ L−1
im,∞(a)

0

δtf(a, Lim,n(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt

)
dµim(a)

+

∫
a>bim

(∫ L−1
im,∞(bim)

0

δtf(a, Lim,n(t))dt

)
dµim(a), (134)

fn =

∫ bin

0

(∫ L−1
in,∞(a)

0

δtf(a, Lin,n(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt

)
dµin(a)

+

∫
a>bin

(∫ L−1
in,∞(bin)

0

δtf(a, Lin,n(t))dt

)
dµin(a), (135)

and

gn = 1− δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
+ q

(
δL

−1
in,∞(bin)

(
p+ (1− p)ηbin

)
− δL

−1
im,∞(bim)ηbim

)
.

(136)
By construction, the functions V̂n have the property that

Vn(π) = V̂n(b, b) (137)

for a policy π represented by b = b, and

Vn(π) = V̂n(bim, bin) (138)

for a policy π represented by b = (bim, bin).
Under the assumption that V̂∞ and all functions V̂n are continuous at b = 0, we will complete

our proof. We have that {V̂n}n∈N is a sequence of continuous functions on the compact space

Q̄ ∪ {(0, 0)} = {(b, b) : b ∈ [0, β]} ∪ {(bim, bin) : bim, bin ∈ [β,∞) ∪ {∞}} (139)

that is monotonically converging to V̂∞, which is also continuous. Thus, this convergence is
uniform by Dini’s theorem. In particular, we have

sup
π∈Π

|Vn(π)− V∞(b(π))| ≤ sup
(bim,bin)∈Q̄∪{(0,0)}

∣∣∣V̂n(bim, bin)− V̂n(bim, bin)
∣∣∣ < ε

3
(140)
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for sufficiently large n as desired, where we have used the fact that the set of all strategies b of
the continuous learning model that represent policies π ∈ Π of M (n) is a subset of Q̄. Our
overall theorem statement then follows from the triangle inequality.

It remains to show that V̂∞ (respectively, all functions V̂n), which are only defined for b > 0,
can be continuously extended to b = 0. For this, it suffices to show that the constituent functions
V̂im,∞ and V̂in,∞ (respectively, V̂im,n and V̂im,n) can be continuously extended to b = 0. Observe
that the numerator and denominator of each constituent function are both equal to zero at b = 0,
which creates the a priori possible obstruction to continuity. However, by L’Hôspital’s rule, if
both the numerator and the denominator are differentiable at b = 0 and the derivative of the
denominator has nonzero value at b = 0, then the limit of the function as b→ 0 is well-defined,
as desired.

The derivative of the denominator g = gn at zero is computed by the product rule and chain
rule:

d

db
g(b, b)|b=0 = (1− q)

((
log 1

δ

)
δL

−1
in,∞(0)

d
dt
Lin,∞(0)

(
p+ (1− p)η0

)
+ δL

−1
in,∞(0)(1− p)

(
log

1

η

)
η0

)

+ q

((
log 1

δ

)
δL

−1
im,∞(0)

d
dt
Lin,∞(0)

η0 + δL
−1
im,∞(0)

(
log

1

η

)
η0

)
(141)

= (1− q)

( (
log 1

δ

)
d
dt
Lin,∞(0)

(p+ (1− p)) + (1− p)

(
log

1

η

))

+ q

( (
log 1

δ

)
d
dt
Lin,∞(0)

+

(
log

1

η

))
> 0. (142)

To conclude via the product rule that the derivatives of the numerators of each of the func-
tions V̂im,∞ and V̂in,∞ (respectively, V̂im,n, and V̂im,n) is well-defined at b = 0, it suffices to
check whether the derivatives of e (respectively, en) and f (respectively, fn) are well-defined at
b = 0; this is because

a = an, (143)

b = bn, (144)

c = cn, (145)

and
d = dn, (146)
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are clearly differentiable via the chain rule. Indeed, Leibniz’s integral rule yields that the deriva-
tives of en and fn are well-defined and given at b = 0 by

d

db
en|b=0 = µim(0)

(∫ L−1
im,∞(0)

0

δtf(a, Lim,n(t))dt+

∫ ∞

L−1
im,∞(0)

δtdt

)

− µim(0)

∫ L−1
im,∞(0)

0

δtf(a, Lim,n(t))dt+

∫
a>0

δL
−1
im,∞(0)f(a, 0)
d
dt
Lim,∞(0)

dµim

=

(
log

1

η

)
1

log 1
δ

+

∫
a>0

δL
−1
im,∞(0)f(a, 0)
d
dt
Lim,∞(0)

dµim (147)

and

d

db
fn|b=0 = µin(0)

(∫ L−1
in,∞(0)

0

δtf(a, Lin,n(t))dt+

∫ ∞

L−1
in,∞(0)

δtdt

)

− µin(0)

∫ L−1
in,∞(0)

0

δtf(a, Lin,n(t))dt+

∫
a>0

δL
−1
in,∞(0)f(a, 0)
d
dt
Lin,∞(0)

dµin

= (1− p)

(
log

1

η

)
1

log 1
δ

+

∫
a>0

δL
−1
in,∞(0)f(a, 0)
d
dt
Lin,∞(0)

dµin. (148)

The calculations for e and f are analogous—the only difference being that the function Lj,n(t)

in the integrand is replaced with Lj,∞(t)—and give the identical answers for the derivative at
b = 0. The product rule thus yields the derivative of the numerators at b = 0, as needed.

A.5 Proof of Proposition 5

For every strategy b = (bim, bin) such that bim < ∞, we construct another strategy b′ that
achieves a strictly higher value V∞(b′). This shows that a necessary condition for b = (bim, bin)

to maximize V∞ is that bim = ∞. Note that the constructed strategy b′ will not be of the form
b′ = (b′im, b

′
in), i.e., will not repeat the same quitting strategy for every drawn task.

Consider the probability measure µ∞ on the sample space of sequences of tasks drawn i.i.d.
from µ (some of which may not be drawn if the student quits finitely many times),

Ω = U∞. (149)
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The distribution is defined as follows. Let F denote the σ-algebra generated by the algebra

F0 =
∞⋃
n=1

Fn, (150)

where Fn denotes the collection of events whose occurrence can be determined by the results of
the first n draws. The probability distribution µ on U canonically endows F with a probability
measure µ∞, which is used to defined the compute the expected value of the payoff.

Let V∞(b′′, ω) denote the total payoff when the student uses a strategy b′′ and the sequence
of task types is ω ∈ Ω. Then, the total payoff V∞(b′′) is given by

V∞(b′′) =

∫
Ω

V∞(b′′)dµ∞(ω). (151)

We modify b = (bim, bin) to obtain the alternative strategy

b′ = (([q, b′im; (1− q)p, b′in], bin), (bim, bin), (bim, bin), . . .) , (152)

where the first factor
[q, b′im; (1− q), b′in] (153)

denote the probabilistic quitting strategy of, assuming learning has not completed by then, quit-
ting with probability q at

b′im = Lim,∞
(
2L−1

im,∞(bim)
)

(154)

and quitting with probability (1− q) at

b′in = Lim,∞
(
L−1
im,∞(bim) + L−1

im,∞(bin)
)
. (155)

The probabilistic strategy b′ can be written as a combination of two deterministic strategies:

b′im = ((b′im, bin), (bim, bin), (bim, bin, . . .) (156)

with probability q and

b′im = ((b′in, bin), (bim, bin), (bim, bin, . . .) (157)
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with probability 1− q.
We will show that

V∞(b) =

∫
Ω

V∞(b)dµ∞(ω) (158)

is strictly less than

V∞(b′) =

∫
Ω

V∞(b′)dµ∞(ω), (159)

thus showing that b′ strictly outperforms b.
First, we partition the sample space Ω into subsets

Ω = Ω1 ∪ Ω2, (160)

defined by
Ω1 = {ω = ((j1, a1), . . .) : j1 = in or a1 ≤ bim} (161)

Ω2 = {ω = ((j1, a1), . . .) : j1 = im and a1 > bim}. (162)

Note that ∫
Ω1

V∞(b, ω)dµ∞(ω) =

∫
Ω1

V∞(b′, ω)dµ∞(ω). (163)

Indeed, if j1 = im and a1 ≤ bim for ω ∈ Ω1, then both b and b′ learn the first task until
completion and stick with it forever; and if j1 = in, the strategies b and b′ play in the same way
for such a task sequence ω.

It thus suffices to show that∫
ω∈Ω2

V∞(b, ω)dµ∞ <

∫
ω∈Ω2

V∞(b′, ω)dµ∞. (164)

Partition Ω2 into subsets
Ω2 = Ω3 ∪ Ω4 ∪ Ω5 (165)

defined by

Ω3 = {ω = ((j1, a1), (j2, a2), . . .) : j1 = im, a1 > bim, and j2 = im} (166)

Ω4 = {ω = ((j1, a1), (j2, a2), . . .) : j1 = im, a1 > bim, j2 = in, and a2 <∞} (167)
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and

Ω5 = {ω = ((j1, a1), (j2, a2), . . .) : j2 = in, a2 = ∞, j2 = in, and a2 = ∞}. (168)

It suffices to show that ∫
ω∈Ω3

V∞(b, ω)dµ∞ < q

∫
ω∈Ω2

V∞(b′im, ω)dµ
∞, (169)

∫
ω∈Ω4

V∞(b, ω)dµ∞ < (1− q)(1− p)

∫
ω∈Ω2

V∞(b′in, ω)dµ
∞, (170)

and ∫
ω∈Ω5

V∞(b, ω)dµ∞ < (1− q)p

∫
ω∈Ω2

V∞(b′in, ω)dµ
∞, (171)

since b′ plays as the strategy b′im with probability q (the proportion of Ω3 in Ω2) and as the
strategy b′in with probability (the proportion of Ω4 and Ω5 combined in Ω2).

We first show inequality (169). Check that the left-hand side is given by∫
ω∈Ω3

V∞(b, ω)dµ∞ =

∫
ω̄∈Ω′

3

V∞(b, ((im, bim + ε), ω̄)))

(∫
{(im,a1):a1>bim}

dµ

)
dµ∞

= qηbim
∫
ω̄∈Ω′

3

V∞(b, ((im, bim + ε), ω̄))dµ∞, (172)

where ω̄ ∈ Ω′
3 parametrizes the task subsequence of ω ∈ Ω3 given by

ω̄ = ((j2, a2), (j3, a3), . . .), (173)

bim + ε is an arbitrary task difficulty level greater than bim,

V∞(b, ((im, bim + ε), ω̄))) (174)

does not depend on the choice of bim + ε, and we have an isomorphism of probability spaces

Ω′
3
∼= {(im, a) : a > 0} × U∞. (175)
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Next, check that the right-hand side can be written as

q

∫
ω∈Ω2

V∞(b′im, ω)dµ
∞ = q

∫
{(im,a1):a1>bim}

(∫
ω̂∈Ω′

2

V∞ (b′, ((j1, a1), ω̂)) dµ
∞

)
dµ

= qηbim
∫
{(im,a):a>0}

(∫
ω̂∈Ω′

2

V∞ (b′, ((j1, a+ bim), ω̂)) dµ
∞

)
dµ,

(176)

where ω̂ ∈ Ω′
2 parametrizes the task subsequence of ω ∈ Ω2 given by

ω̂ = ((j2, a2), (j3, a3), . . .), (177)

and we have an isomorphism of probability spaces

Ω′
2
∼= U∞. (178)

Using the isomorphisms, we reduce our inequality (169) to the following:∫
((j2,a),(j3,a3),...)∈{(im,a′) :a′>0}×U∞

V∞(b, ((im, bim + ε), (j2, a), (j3, a3) . . .))dµ
∞

<

∫
((j1,a),(j2,a2),...)∈{(im,a′) :a′>0}×U∞

V∞(b′, ((j1, a+ bim), (j2, a2) . . .))dµ
∞. (179)

There is a clear isomorphism of the probability space of task sequences

((j2, a), (j3, a3), . . .) ∈ {(im, a′) : a′ > 0} × U∞ (180)

and the probability space

((j1, a), (j2, a2), . . .) ∈ {(im, a′) : a′ > 0} × U∞. (181)

It suffices to show that the strict inequality holds for the one-to-one-corresponding integrands
in this isomorphism, which we will refer to as the left-hand-side value function

V∞(b, ((im, bim + ε), (j2, a), (j3, a3) . . .)) (182)
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and the right-hand-side value function

V∞(b′, ((j1, a+ bim), (j2, a2) . . .)) (183)

We need to show that

V∞(b, ((im, bim + ε), (im, a), (j′3, a
′
3), . . .)) < V∞(b′, ((im, a+ bim), (j

′
2, a

′
2), (j

′
3, a

′
3), . . .))

(184)
Note that the sub-payoff values in the subinterval of time

[0, L−1
im,∞(bim)) (185)

for both value functions are identical. This is because the first task is of type j = im and is
learned to the point of time L−1

im,∞(bim) for both value functions.
Also, conditional on the assumption that the task that is learned at time t = L−1

im,∞(bim)

(second task and first task, respectively) does not learn to completion—that a1 < bim and
a1 + bim < b′im, respectively—the sub-payoff values in the subinterval of time

[2L−1
im,∞(bim),∞) (186)

are also identical for both value functions. This is because conditional on this assumption, the
aforementioned task is quit at time t = 2L−1

im,∞(bim), after which the payoff in the remaining
time is the same.

Next, we show that if the task that is learned at time t = L−1
im,∞(bim) learns to completion

for the left-hand-side value function in that a1 < bim, then it also learns to completion for the
right hand-side value function in that a1 + bim < b′im. This is a consequence of the assumption
that Lim,∞(t) is convex. It follows that at time t = L−1

im,∞(bim), the difference a in knowledge
that is required to complete the task learning requires less (or equal) time for the right-hand-side
value function, spanning

t = L−1
im,∞(bim) to t = L−1

im,∞(bim + a); (187)

than the time required to complete the task learning for the left-hand-side value function, span-
ning

t = L−1
im,∞(bim) to t = L−1

im,∞(bim) + L−1
im,∞(a). (188)
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Indeed, our assumption that Lim,∞(t) is convex yields the fact that L−1
im,∞(b) is concave, which

yields
L−1
im,∞(bim + a) ≤ L−1

im,∞(bim) + L−1
im,∞(a). (189)

If learning of this task completes for the left-hand-side, then it also completes for the right-
hand-side; consequently, no future tasks are drawn, and the sub-payoff values for the subperiod
of time (186) are equal. On the other hand, if learning of this task completes for the right-
hand-side value function, then no future tasks are drawn for it (but may be drawn for the left-
hand-side value function); consequently, the sub-payoff values for the subperiod of time (186)
automatically satisfy the desired direction of inequality.

Moreover, the respective sub-payoff values in the remaining subperiod of time

[L−1
im,∞(bim), 2L

−1
im,∞(bim)) (190)

are given by

∫ 2L−1
im,∞(bim)

L−1
im,∞(bim)

δt

 f(a, Lim,∞(t− L−1
im,∞(bim))) for t < L−1

im,∞(bim) + L−1
im,∞(a)

1 for t ≥ L−1
im,∞(bim) + L−1

im,∞(a)

 dt

(191)
for the left-hand-side value function and

∫ 2L−1
im,∞(bim)

L−1
im,∞(bim)

δt

 f(bim + a, Lim,∞(t)) for t < L−1
im,∞(bim + a)

1 for t ≥ L−1
im,∞(bim + a)

 dt (192)

for the right-hand-side value function. It follows from the inequalities (189),

f(a, Lim,∞(t− L−1
im,∞(bim))) < f(bim + a, bim + Lim,∞(t− L−1

im,∞(bim)))

≤ f(bim + a, Lim,∞(t)), (193)

and
f(a, b) ≤ 1 (194)

that the sub-payoff value (191) of the left-hand-side value function is strictly less than that (192)
of the right-hand-side value function.

We have overall shown the inequality of integrands (184), which implies the inequality
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(176), and thereby, the inequality (169).
The second of our desired inequality (170) will be shown analogously. Check that the left-

hand side is given by∫
ω∈Ω4

V∞(b, ω)dµ∞

=

∫
((in,a2),ω̄)∈{(in,a2):a2∈(0,∞)}×Ω′

4

V∞(b, ((im, bim + ε), (in, a2), ω̄))

(∫
{(im,a1):a1>bim

dµ

)
dµ∞

= qηbim
∫
((in,a2),ω̄)∈{(in,a2):a2∈(0,∞)}×Ω′

4

V∞(b, ((im, bim + ε), (in, a2), ω̄))dµ
∞

= qηbim(1− q)(1− p)

∫
a2∈(0,∞)

(
log

1

η

)
ηa2

(∫
ω̄∈Ω′

4

V∞(b, ((im, bim + ε), (in, a2), ω̄))dµ
∞

)
da2,

(195)

where ω̄ ∈ Ω′
4 parametrizes the task subsequence of ω ∈ Ω4,

ω̄ = ((j3, a3), (j4, a4), . . .), (196)

bim + ε is an arbitrary task difficulty level greater than bim,

V∞(b, ((im, bim + ε), (in, a2), ω̄)) (197)

does not depend on the choice of bim + ε, and we have an isomorphism of probability spaces

Ω′
4
∼= U∞. (198)

Next, check that the right-hand-side inequality can be written as

(1− q)(1− p)

∫
ω∈Ω2

V∞(b′in, ω)dµ
∞

= (1− q)(1− p)

∫
{(im,a1):a1>bim}

(∫
ω̂∈Ω′

2

V∞(b′in, ((im, a1), ω̂))dµ
∞

)
dµ

= (1− q)(1− p)qηbim
∫
a∈(0,∞)

(
log

1

η

)
ηa

(∫
ω̂∈Ω′

2

V∞(b′in, ((im, a+ bim), ω̂))dµ
∞

)
da

(199)
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Using the isomorphisms (219) and (175), we reduce our inequality (170) to∫
(a,(j3,a3),...)∈(0,∞)×U∞

V∞(b, ((im, bim + ε), (in, a), (j3, a3) . . .))dµ
∞dµη

<

∫
(a,(j2,a2),...)∈(0,∞)×U∞

V∞(b′, ((im, a+ bim), (j2, a2) . . .))dµ
∞dµη, (200)

where µη = µim = µin|a<∞ denotes the exponential distribution of decay factor η on (0,∞).
There is a clear isomorphism of the probability space of task sequences

(a, (j3, a3), . . .) ∈ (0,∞)× U∞ (201)

and the probability space
(a, (j2, a2), . . .) ∈ (0,∞)× U∞. (202)

It suffices to show that the strict inequality holds for the one-to-one-corresponding integrands
in this isomorphism, which we will refer to as the left-hand-side value function

V∞(b, ((im, bim + ε), (in, a), (j3, a3) . . .)) (203)

and the right-hand-side value function

V∞(b′, ((im, a+ bim), (j2, a2) . . .)). (204)

We need to show that

V∞(b, ((im, bim + ε), (in, a), (j3, a3) . . .)) < V∞(b′, ((im, a+ bim), (j2, a2) . . .)). (205)

Just as before, the sub-payoff-values in the subinterval of time

[0, L−1
im,∞(bim)) (206)

for both value functions are identical.
Also, similarly to before, conditional on the assumption that task that is learned at time

t = L−1
im,∞(bim) (second task and first task, respectively) does not learn to completion—that
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a1 < bin and a1 + bim < b′in, respectively—the sub-payoff values in the subinterval of time

[L−1
im,∞(bim) + L−1

in,∞(bin),∞) (207)

are identical for both value functions.
Next, we show that if the task that is learned at time t = L−1

im,∞(∞) learns to completion for
the left-hand sidevaue function in that a1 < bin, then it also learns to completion for the right-
hand-side value function in that a1 + bim < b′in. This is a consequence of two assumptions: the
assumption that Lim,∞(t) is convex (equivalently, that L−1

im,∞(b) is concave) and the assumption
that Lin,∞(t) ≤ Lim,∞(t) (equivalently, that L−1

im,∞(b) ≤ L−1
in,∞(b)). It follows that at time

t = L−1
im,∞(bim), the difference a in knowledge that is required to complete the task learning

requires less (or equal) time for the right-hand-side value function, spanning

t = L−1
im,∞(bim) to t = L−1

im,∞(bim + a), (208)

than the time required to complete the task learning for the left-hand-side value function, span-
ning

t = L−1
im,∞(bim) to t = L−1

im,∞(bim) + L−1
in,∞(a), (209)

Indeed, our two aforementioned assumptions together yield

L−1
im,∞(bim + a) ≤ L−1

im,∞(bim) + L−1
im,∞(a) ≤ L−1

im,∞(bim) + L−1
in,∞(a). (210)

If learning of this task completes for the left-hand-side, then it also completes for the right-
hand-side; consequently, no future tasks are drawn, and the sub-payoff values for the subperiod
of time (207) are equal. On the other hand, if learning of this task completes for the right-
hand-side value function, then no future tasks are draw for it (but may be drawn for the left-
hand-side value function); consequently, the sub-payoff values for the subperiod of time (207)
automatically satisfy the desired direction of inequality.

Finally, the respective sub-payoff values in the remaining subperiod of time

[L−1
im,∞(bim), L

−1
im,∞(bim) + L−1

in,∞(bin)) (211)
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are given by

∫ L−1
im,∞(bim)+L−1

in,∞(bin)

L−1
im,∞(bim)

δt

 f(a, Lin,∞(t− L−1
im,∞(bim))) for t < L−1

im,∞(bim) + L−1
in,∞(a)

1 for t ≥ L−1
im,∞(bim) + L−1

in,∞(a)

 dt

(212)
for the left-hand-side value function and

∫ L−1
im,∞(bim)+L−1

in,∞(bin)

L−1
im,∞(bim)

δt

 f(bim + a, Lim,∞(t)) for t < L−1
im,∞(bim + a)

1 for t ≥ L−1
im,∞(bim + a)

 dt (213)

for the right-hand-side value function. It follows from the inequalities (210),

f(a, Lin,∞(t− L−1
im,∞(bim))) ≤ f(a, Lim,∞(t− L−1

im,∞(bim)))

< f(bim + a, bim + Lim,∞(t− L−1
im,∞(bim)))

≤ f(a, Lim,∞(t)), (214)

and f(a, b) ≤ 1 that the sub-payoff value (212) of the left-hand-side value function is strictly
less than that (213) of the right-hand-side value function.

Overall, we have shown the inequality of integrands (205), which implies the inequality
(200) and thereby, the inequality (170).

It remains to show the inequality (171). Check that the left-hand side is given by∫
ω∈Ω5

V∞(b, ω)dµ∞

=

∫
((in,a2),ω̄)∈{(in,∞)}×Ω′

5

V∞(b, ((im, bim + ε), (in, a2), ω̄)))

(∫
{(im,a1):a1>bim

dµ

)
dµ∞

= qηbim
∫
((in,a2),ω̄)∈{(in,∞)}×Ω′

5

V∞(b, ((im, bim + ε), (in, a2), ω̄))dµ
∞

= qηbim(1− q)p

(∫
ω̄∈Ω′

5

V∞(b, ((im, bim + ε), (in,∞), ω̄))dµ∞

)
(215)

= qηbim(1− q)p

∫
ā∈(0,∞)

(∫
ω̄∈Ω′

5

V∞(b, ((im, bim + ε), (in,∞), ω̄))dµ∞

)
dµη, (216)
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where ω̄ ∈ Ω′
5 parametrizes the task subsequence of ω ∈ Ω5,

ω̄ = ((j3, a3), (j4, a4), . . .), (217)

bim + ε is an arbitrary task difficulty level greater than bim,

V∞(b, ((im, bim + ε), (in,∞), ω̄)) (218)

does not depend on the choice of bim + ε, we have an isomorphism of probability spaces

Ω′
5
∼= U∞, (219)

and ā, distributed as µη, is a dummy variable. Next, check that the right-hand side of the
inequality

(1− q)p

∫
ω∈Ω2

V∞(b′in, ω)dµ
∞

= (1− q)p

∫
{(im,a1):a1>bim}

(∫
ω̂∈Ω′

2

V∞(b′in, ((im, a1), ω̂))dµ
∞

)
dµ

= (1− q)pqηbim
∫
a∈(0,∞)

(∫
ω̂∈Ω′

2

V∞(b′in, ((im, a+ bim), ω̂))dµ
∞

)
dµη. (220)

There is a clear isomorphism of the probability space of task sequences

(a, (j3, a3), . . .) ∈ (0,∞)× U∞ (221)

and the probability space
(a, (j2, a2), . . .) ∈ (0,∞)× U∞. (222)

It suffices to show that the strict inequality holds for the one-to-one-corresponding integrands
in this isomorphism, which we will refer to as the left-hand-side value function

V∞(b, ((im, bim + ε), (in,∞), (j3, a3) . . .)) (223)
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and the right-hand-side value function

V∞(b′, ((im, a+ bim), (j2, a2) . . .)). (224)

We need to show that

V∞(b, ((im, bim + ε), (in,∞), (j3, a3) . . .)) < V∞(b′, ((im, a+ bim), (j2, a2) . . .)). (225)

Just as before, the sub-payoff-values in the subinterval of time

[0, L−1
im,∞(bim)) (226)

for both value functions are identical.
Also, similarly to before, conditional on the assumption that task that is learned at time

t = L−1
im,∞(bim) (second task and first task, respectively) does not learn to completion—that

a1 < bin and a1 + bim < b′in, respectively—the sub-payoff values in the subinterval of time

[L−1
im,∞(bim) + L−1

in,∞(bin),∞) (227)

are identical for both value functions.
Next, we show that if the task that is learned at time t = L−1

im,∞(∞) learns to completion
for the left-hand sidevaue function in that a1 < bin, then it also learns to completion for the
right-hand-side value function in that a1 + bim < b′in. In fact, note that learning for this task
can never complete for the left-hand-side value function, since the task difficulty is a = ∞.
Thus, this step is trivially satisfied. consequently, the sub-payoff values for the subperiod of
time (227) automatically satisfy the desired direction of inequality.

Finally, the respective sub-payoff values in the remaining subperiod of time

[L−1
im,∞(bim), L

−1
im,∞(bim) + L−1

in,∞(bin), ] (228)

are given by

∫ L−1
im,∞(bim)+L−1

in,∞(bin)

L−1
im,∞(bim)

δtf(∞, Lin,∞(t− L−1
im,∞(bim)))dt = 0 (229)
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for the left-hand-side value function and

∫ L−1
im,∞(bim)+L−1

in,∞(bin)

L−1
im,∞(bim)

δt

 f(bim + a, Lim,∞(t)) for t < L−1
im,∞(bim + a)

1 for t ≥ L−1
im,∞(bim + a)

 dt (230)

for the right-hand-side value function. It follows that the sub-payoff value (229) of the left-
hand-side value function is strictly less than that (230) of the right-hand-side value function.

We have overall shown (225). This shows the inequality (220), and thereby, the desired
inequality (171). This completes our proof.

A.6 Proof of Proposition 6

We use a similar proof strategy as that of the proof of Proposition 5. For every strategy b =

(bim,∞), we construct another strategy b′, not of the form b′ = (b′im, b
′
in), that achieves a strictly

higher value V∞(b′). This shows that a necessary condition for b = (bim, bin) to maximize V∞
is that bin = ∞.

The modification b′ is defined by

b′ = ((bim, b
′), (bim,∞), (bim,∞), . . .) , (231)

for a value b′ that will be specified later.
We partition the sample space Ω into subsets

Ω = Ω6 ∪ Ω7 (232)

defined by
Ω6 = {ω = ((j1, a1), . . .) : j1 = im or a1 ≤ b′} (233)

and
Ω7 = {ω = ((j1, a1), . . .) : j1 = in and a1 > b′}. (234)

Note that ∫
Ω6

V∞(b, ω)dµ∞ =

∫
Ω6

V∞(b′, ω)dµ∞ (235)

Indeed, if j1 = in and a1 ≤ b′ for ω ∈ Ω1, then both b and b′ learn the first task until completion
and stick with it forever; and if j1 = im, the strategies b and b′ play in the same way for such a
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task sequence ω.
It thus suffices to show that∫

ω∈Ω7

V∞(b, ω)dµ∞ <

∫
ω∈Ω7

V∞(b′, ω)dµ∞. (236)

Observe that for each ω ∈ Ω7, the sub-payoff value of the value function V∞(b, ω) and that of
the value function V∞(b′, ω) for the subperiod of time

[0, L−1
in,∞(b′)) (237)

are identical, since both strategies learn the first task during this subperiod.
The key insight is that the sub-payoff value of the value function V∞(b′, ω) in the remaining

subperiod of time
[L−1

in,∞(b′),∞) (238)

is always given by
δL

−1
in,∞(b′)V∞(b′′, ω̄), (239)

where
b′′ = ((bim,∞), (bim,∞), . . .) (240)

and
ω̄ = ((j2, a2), . . .) (241)

are obtained from b′ and ω, respectively, by truncating the leftmost term. It follows that the
integral of this sub-payoff value over Ω7 is∫

ω∈Ω7

δL
−1
in,∞(b′)V∞(b′′, ω̄)dµ∞ = δL

−1
in,∞(b′)

∫
{(in,a1):a1>b′}

∫
ω̄∈U∞

V∞(b′′, ω̄)dµ∞dµ

= δL
−1
in,∞(b′)

(
p+ (1− p)ηb

′
)
V∞(b′′). (242)

In contrast, the integral of the sub-payoff value of the value function V∞(b, ω) in the subpe-
riod (238) is given by

∫
ω∈Ω7

(∫ ∞

L−1
in,∞(b′)

f(a1, Lin,∞(t))dt

)
dµ∞
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=

∫
{ω∈Ω7:a1=∞}

(∫ ∞

L−1
in,∞(b′)

f(a1, Lin,∞(t))dt

)
dµ∞

+

∫
{ω∈Ω7:a1<∞}

(∫ ∞

L−1
in,∞(b′)

f(a1, Lin,∞(t))dt

)
dµ∞

=

∫
{ω∈Ω7:a1<∞}

(∫ ∞

L−1
in,∞(b′)

f(a1, Lin,∞(t))dt

)
dµ∞

≤
∫
{ω∈Ω7:a1<∞}

dµ∞

(∫ ∞

L−1
in,∞(b′)

1dt

)
=
(
(1− p)ηb

′
)
δL

−1
in,∞(b′) 1

log 1
δ

. (243)

Note that as b′ → ∞, the expression (242) divided by δL
−1
in,∞(b′) converges to

pV∞(b′′) > 0, (244)

whereas the upper bound (243) divided by δL
−1
in,∞(b′) converges to 0. This shows that for b′

sufficiently large, the inequality (236) holds.
For b = b = ∞, since V∞(b) = V∞(b, b), we can modify the strategy (b, b) = (∞,∞) in

the same way as above (for a sufficiently large b′) to find a strategy that outperforms b.

A.7 Proof of Corollary 7

Let V̂ p̄,q̄
∞ (bim, bin) denote the expression V̂∞(bim, bin) when the parameter choices p = p̄ and

q = q̄ are made. Similarly, let V̂ p̄,q̄,L̄im,∞,L̄in,∞
∞ (bim, bin) denote the expression V̂∞(bim, bin)

when the parameter choices p = p̄, q = q̄, Lim,∞ = L̄im,∞ and Lin,∞ = L̄in,∞ are made.
When parameters Lim,∞ and Lin,∞ are omitted from the superscript, the meaning is that they
are assumed to be the original fixed ones.

For each of part (a) and part (b), we will show a stronger statement than the theorem
statement. Specifically, we will show that for any pair of decreasing sequences {pn}n∈N and
{qm}m∈N converging to zero, there exists N such that for any n ≥ N , we can find Mn such
that the quitting point of innovation-learning tasks bin of any strategy b = (∞, bin) maximizing
V pn,qm
∞ is greater than γ for all m ≥Mn.

We note that the sequence of continuous functions {V̂ pn,0
∞ }n∈N pointwise converge to the
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continuous function V̂ 0,0
∞ . By part (a) of Lemma 8, this sequence of continuous functions in

fact monotonically converges (increasing with respect to n) to V̂ 0,0
∞ . An application of Dini’s

theorem thus shows that the convergence of {V̂ pn,0
∞ }n∈N to V̂ 0,0

∞ on the compact space Q̄ ∪
{(0, 0)} is uniform.

The proof of Proposition 5 implies that the maximum of V̂ 0,0
∞ on Q̄ ∪ {(0, 0)} is attained at

(bim, bin) = (barbitrary,∞); note that the subscript “arbitrary” means the choice of that parameter
has no effect. Indeed, check that

V̂ 0,0
∞ (barbitrary, b) = V̂

parbitrary,1,Lin,∞,Lin,∞
∞ (b, b′arbitrary), (245)

since when p = 0, we have the equality of distributions µin = µim; and we have set the learning
function of imitation-learning tasks to be Lin,∞ as well. The proof of Proposition 5 shows that
we have

V̂
parbitrary,1,Lin,∞,Lin,∞
∞ (b, b) < V̂

parbitrary,1,Lin,∞,Lin,∞
∞ (∞, b), (246)

where we have set b′arbitrary = b. This shows that (∞, b′arbitrary) maximizes the function V̂ parbitrary,1,Lin,∞,Lin,∞
∞ ;

equivalently, (barbitrary,∞) maximizes the function V̂ 0,0
∞ .

We will now avoid the use of the term barbitrary, and instead define

Ṽ (b) = V̂ 0,0
∞ (barbitrary, b). (247)

Let γ ≥ 0. Consider the positive number

ε = Ṽ (∞)−max
b≤γ

Ṽ (b). (248)

By uniform convergence, there exists N such that for all n ≥ N , we simultaneously have

|V̂ pn,0
∞ (b1,∞)− V̂ 0,0

∞ (b1,∞)| < ε

2
(249)

and
|V̂ pn,0

∞ (b2, b)− V̂ 0,0
∞ (b2, b)| <

ε

2
(250)

for all b ≤ γ. Since
V̂ 0,0
∞ (b1, b) = Ṽ (b) < Ṽ (∞) < V̂ 0,0

∞ (b2,∞) (251)

for every b ≤ γ with a difference of at least ε, it follows from the triangle inequality that for any
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n ≥ N , we have
V̂ pn,0
∞ (b2, b) < V̂ pn,0

∞ (b1,∞) (252)

for all b ≤ γ. Note that the choice of b1 and b2 has no effect on the values V̂ pn,0
∞ (b2, b) and

V̂ pn,0
∞ (b1,∞).

Fix n ≥ N . By part (b) of Lemma 8, the continuous functions {V̂ pn,qm
∞ }m∈N monotonically

converge (decreasing with respect to m) to V̂ pn,0
∞ , which is also continuous. It thus follows from

Dini’s theorem that the convergence of {V̂ pn,qm
∞ }m∈N to V̂ pn,0

∞ on the compact space Q̄∪{(0, 0)}
is uniform. Let

ε = V̂ pn,0
∞ (b1,∞)− sup

b≤γ
V̂ pn,0
∞ (b2, b), (253)

which is positive by our choice of n. By uniform convergence, there exists Mn such that for all
m ≥Mn, we simultaneously have the inequality∣∣∣V̂ pn,qm

∞ (∞,∞)− V̂ pn,0
∞ (∞,∞)

∣∣∣ < ε

2
, (254)

where we have set b1 = ∞; and the inequality∣∣∣V̂ pn,qm
∞ (b2, b)− V̂ pn,0

∞ (b2, b)
∣∣∣ < ε

2
(255)

for any (b2, b) ∈ Q̄. Since
V̂ pn,0
∞ (b2, b) < V̂ pn,0

∞ (∞,∞) (256)

for all b ≤ γ with a difference of at least ε, it follows from the triangle inequality that for any
m ≥Mn, we have

V̂ pn,qm
∞ (b2, b) < V̂ pn,qm

∞ (∞,∞) (257)

for all b ≤ γ. Setting b2 = ∞ yields part (b), while setting b2 = b yields part (a).
In this proof, we have applied the proof of Proposition 5 to show a necessary lemma that

can be described as the following. In the continuous learning model with parameters q = 1

and Lim,∞(t) = L(t), the unique strategy to maximize V∞(b) is b = ∞, where the single entry
denotes that there is no ambiguity in learning types. Strictly speaking, the proof of Proposition 5
applied to this continuous learning game only shows that b = ∞ outperforms b′ = b ∈ (0,∞),
and not necessarily b → 0. This leaves the possibility that V∞(b) is also maximized at b → 0,
with the same function value as b = ∞. This implies that V∞ is decreasing near b = 0.
However, a quick application of the proof of Proposition 5 shows that this possibility does
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not arise. Specifically, this proof shows that for small b > 0, the strategy b′ = b is strictly
outperformed by

b′′ =
(
L
(
2L−1(b)

)
, b, b, . . .

)
, (258)

which—as a subsequent application of this proof shows—is strictly outperformed by

b′′′ =
(
L
(
2L−1(b)

)
, L
(
2L−1(b)

)
, b, b, . . .

)
. (259)

Continuing iteratively, we obtain that b′ is strictly outperformed by the strategy

b̂ = L
(
2L−1(b)

)
. (260)

Taking b to be small, we see that Ṽ (0) = limb→0 V (b) cannot be decreasing near b = 0, and
thus it is impossible that the maximum is attained at the two endpoints b = 0 and b = ∞.

A.8 Proof of Lemma 8

Recall that
V̂∞(bim, bin) = qV̂im(bim, bin) + (1− q)V̂in(bim, bin) (261)

for
V̂im(bim, bin) =

de− bf

g
(262)

and
V̂in(bim, bin) =

af− ce

g
. (263)

First, we show that
∂

∂p
V̂∞(bim, bin) ≤ 0, (264)

with equality if and only if q = 1. Note that the only one of a, b, c, d, e, f, and g that is not
constant with respect to p is f . We thus have

∂

∂p
V̂∞(bim, bin) =

∂

∂p
V̂∞(bim, bin) =

−qb+ (1− q)a

g

(
∂

∂p
f

)
. (265)

Check that

−qb+ (1− q)a = q(1− q)δL
−1
in,∞(bin)ηbim + 1− q − q(1− q)δL

−1
im,∞(bim)ηbim
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≥ 1− q − q(1− q)δL
−1
im,∞(bim)ηbim

≥ 1− q − q(1− q) = (1− q)2, (266)

which is nonnegative, and positive if and only if q < 1. Check also that

g = 1− q − (1− q)δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
+ q − qδL

−1
im,∞(bim)ηbim ≥ 0. (267)

with equality if and only if (bim, bin) = (0, 0), since

δL
−1
in,∞(bin)

(
p+ (1− p)ηbin

)
, δL

−1
im,∞(bim)ηbim ≤ 1. (268)

Then, check that

∂

∂p
f =

∂

∂p

(
p · 0 + (1− p)

(∫ bin

0

(∫ L−1
in,∞(a)

0

δtf(a, Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt

)
dµη(a)

+

∫
a>bin

(∫ L−1
in,∞(bin)

0

δtf(a, Lin,∞(t))dt

)
dµη(a)

))

= −

(∫ bin

0

(∫ L−1
in,∞(a)

0

δtf(a, Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt

)
dµη(a)

+

∫
a>bin

(∫ L−1
in,∞(bin)

0

δtf(a, Lin,∞(t))dt

)
dµη(a)

)
≤ 0, (269)

with equality if and only if bin = 0, which is equivalent to (bim, bin) = (0, 0) in our domain
Q̄ ∪ {(0, 0)}. Finally, it follows from the calculation via L’Hôspital’s rule in the proof of
Proposition 4 that

∂
∂p
f

g
→

log 1
η(

log 1
δ

)
d
db
g(b, b)|b=0

> 0 (270)

as b→ 0 for (bim, bin) = (b, b). The condition (bim, bin) = (0, 0) does not make (265) zero.
We thus have shown (264), where equality holds if and only if q = 1.
Next, suppose that Assumption 1 holds and the imitation-learning knowledge functionLim,∞(t)

is convex. We need to show that
∂

∂q
V̂∞(∞, bin) > 0. (271)

Note that e and f are constant in q, while a, b, c, d, and g are not. Check that at (bim, bin) =
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(∞, bin), we have
a = 1, (272)

b = 0, (273)

c = −qδL
−1
in,∞(bin)(p+ (1− p)ηbin), (274)

and
d = 1− (1− q)δL

−1
in,∞(bin)(p+ (1− p)ηbin). (275)

Let
h = δL

−1
in,∞(bin)(p+ (1− p)ηbin). (276)

We next apply the quotient rule to obtain

∂

∂q
V̂∞(∞, bin)

=
1

g2

(
g
∂

∂q
(qde+ (1− q)f− (1− q)ce)− (qde+ (1− q)f− (1− q)ce)

∂g

∂q

)

=
(1− (1− q)h)(e− f)− h(f+ q(e− f))

(1− (1− q)h)2

=
e− f− eh

(1− (1− q)h)2
.

If bim = ∞ so that h = 0, then we have

∂

∂q
V̂∞(∞, bin) = e− f, (277)

which is positive; indeed, check that

e =

∫ ∞

0

(∫ L−1
im,∞(a)

0

δtf(a, Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt

)
dµη(a), (278)

while

f = (1− p)

∫ ∞

0

(∫ L−1
in,∞(a)

0

δtf(a, Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt

)
dµη(a). (279)
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We see that

(1− p)

∫ ∞

0

(∫ L−1
in,∞(a)

0

δtf(a, Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt

)
dµη(a)

<

∫ ∞

0

(∫ L−1
in,∞(a)

0

δtf(a, Lin,∞(t))dt+

∫ ∞

L−1
in,∞(a)

δtdt

)
dµη(a)

≤
∫ ∞

0

(∫ L−1
im,∞(a)

0

δtf(a, Lim,∞(t))dt+

∫ ∞

L−1
im,∞(a)

δtdt

)
dµη(a), (280)

as needed, since Lin,∞(t) ≤ Lim,∞(t).
Now, suppose that bim <∞, so that h > 0. Then, we can write

∂

∂q
V̂∞(∞, bin) =

e− f− eh

(1− (1− q)h)2
=
V̂im(∞, bin)− V̂in(∞, bin)

1− (1− q)h
, (281)

since
V̂im(∞, bin)− V̂in(∞, bin) =

de− bf− (af− ce)

g
=

e− f− eh

1− (1− q)h
. (282)

Thus, we need to show that
V̂im(∞, bin) > V̂in(∞, bin). (283)

This inequality is proven by showing that

V̂im(∞, bin) > V̂im(b) > V̂in(∞, bin), (284)

for
b =

(
(Lim,∞(L−1

in,∞(bin)), bin), (∞, bin), (∞, bin), . . .
)
. (285)

The comprising inequality
V̂im(b) < V̂im(∞, bin) (286)

follows from the optimality of never quitting tasks of type j = im, demonstrated in the proof
of Proposition 5. Indeed, conditional on the current task being of type j = im, the strategy
(∞, bin) is equivalent to never quitting this curren task.

Only the comprising inequality

V̂in(∞, bin) < V̂im(b). (287)
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remains to be shown. The sample space of task sequences for the left-hand-side value function
V̂im(b, bin) is

(0,∞)× U∞ (288)

with the probability measure
µim ⊗ µ∞ = µη ⊗ µ∞, (289)

and the sample space of task sequences of the right-hand-side value function V̂in(bim, bin) is

((0,∞) ∪ {∞})× U∞ (290)

with the probability measure
µin ⊗ µ∞, (291)

where we recall that µin places probability p on a = ∞ and distributes the remaining probability
1− p as the exponential distribution µη. It suffices to show that∫

a1∈(0,∞)

(∫
(j2,a2),...)∈U∞

Vin((∞, bin), ((in, a1), (j2, a2), . . .)dµ
∞
)
dµη

≤
∫
a1∈(0,∞)

(∫
((j2,a2),...)∈U∞

Vim(b, ((im, a1), (j2, a2), . . .))dµ
∞
)
dµη (292)

and ∫
a1∈{∞}

(∫
(j2,a2),...)∈U∞

Vin((∞, bin), ((in, a1), (j2, a2), . . .)dµ
∞
)
dχ

<

∫
a1∈(0,∞)

(∫
((j2,a2),...)∈U∞

Vim(b, ((im, a1), (j2, a2), . . .))dµ
∞
)
dµη (293)

for χ the one-point distribution on {∞}. Indeed, adding the product of the inequality (292) with
(1− p) with the product of the inequality (293) with p yields the desired inequality (287).

The second inequality (293) holds immediately because it simplifies to

0 <

∫
a1∈(0,∞)

(∫
((j2,a2),...)∈U∞

Vim(b, ((im, a1), (j2, a2), . . .))dµ
∞
)
dµη. (294)
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The first inequality (292) holds because for every sample

(a1, (j2, a2), . . .), (295)

the payoff of the left-hand-side value function

Vin((∞, bin), ((in, a1), (j2, a2), . . .)) (296)

is at most the payoff of the right-hand-side value function

Vim(b, ((im, a1), (j2, a2), . . .)). (297)

This is demonstrated by partitioning [0,∞) into various subintervals and looking at the respec-
tive sub-payoff values corresponding to each subinterval.

In the subinterval
[0, L−1

in,∞(bin)), (298)

the sub-payoff value of the left-hand-side value function is at most that of the right-hand-side
value function, because the learning of the first task is faster for the latter than the former:
Lin,∞(t) ≤ Lim,∞(t).

In the subinterval
[L−1

in,∞(bin),∞), (299)

the sub-payoff value of the left-hand-side value function is equal to that of the right-hand-side
value function conditional on the first task being quit at time t = L−1

in,∞(bin) for both, i.e., con-
ditional on learning not yet having completed. And conditional on the opposite—that learning
of the first task completes for at least one of the value functions by time t = L−1

in,∞(bin)—we
have the following. If this occurs for the left-hand-side value function, then it also occurs for
the right-hand side value function, since Lin,∞(t) ≤ Lim,∞(t). Thus, we have the desired in-
equality for the sub-payoff values corresponding to the subinterval (299). If this occurs for the
right-hand-side value function, then its sub-payoff value corresponding to the subinterval (299)
is maximal, so the inequality holds anyway. Thus, we have obtained (293), and thereby the
desired inequality (287).

This concludes our proof of (271).
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