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Abstract
When people get ill, they naturally want to restore health through medical interven-
tions. Here I model a situation in which individuals can psychologically entertain 
multiple potential treatments at once: when illness occurs, individuals would attempt 
one treatment first, and if it fails to produce an observable effect within a particular 
time period, a second treatment is attempted, and the eventual recovery is attributed 
to the treatment that is temporally closer. This creates population dynamics wherein 
the therapeutic power of the superior/effective medical treatments is misattributed 
to inferior/ineffective treatments. Through both analytic formulation and agent-
based simulation, I show that the equilibrium frequencies of different treatment vari-
ants depend on their natural variability in the effect timing, the level of individual 
patience, and the number of cultural models sampled by the naive individual. Both 
ineffective and effective medical treatments may stably coexist in the population 
under a range of parameter settings.

Keywords Cultural evolution · Traditional medicine · Cognition · Agent-based 
simulation

Across cultures and throughout history, one recurrent phenomenon in human socie-
ties is the use of ineffective medical treatments. Early pioneering work in anthropol-
ogy has pointed out that the conception of illness and the corresponding treatments 
in traditional populations are drastically different from those in modern medical sci-
ence (Ackerknecht, 1942; Clements, 1932). Specifically, illnesses are often believed 
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to be caused by spiritual agents (Murdock, 1980) or by an imbalance of bodily ele-
ments such as the humoral theory in ancient Greece and Rome (Javier, 2014) and 
the yin-yang theory in traditional China (Wang, 2014). From a modern scientific 
perspective, treatments based on these traditional theories such as appeasing spir-
itual agents through offerings and sacrifices and restoring the balance of bodily ele-
ments through bloodletting, are unlikely to have real therapeutic effects beyond the 
placebo effect.1 It should be noted that these practices are not only a relic of the past: 
many ineffective treatments still prevail in contemporary modern societies under the 
umbrella category “alternative medicine.” For example, a representative survey con-
ducted in south Australia shows that more than 50% of the respondents used at least 
one non-prescribed alternative medicine in the year 2000 (MacLennan et al., 1996), 
and a similar survey conducted in the US shows that nearly 4 out of 10 adults used 
complementary or alternative medicine in 2007 (Barnes et al., 2009).

What, then, might explain the prevalence and persistence of these ineffective 
medical treatments? Cognitive and evolutionary-minded researchers have attempted 
to address this question from a few angles. Broadly, these efforts can be grouped 
into two categories. First, certain treatments may be subjectively perceived as effica-
cious because they appeal to evolved cognitive mechanisms such that instrumen-
tal practices with specific features appear to be intuitively plausible (Claidière & 
Sperber,  2007; Sperber,  1996). The cultural success of bloodletting, for example, 
has been attributed to its intrinsic plausibility based on folk biological intuitions 
(Miton et  al., 2015). Second, treatments may be perceived as efficacious because 
the outcome information of these treatments is obtained and processed in biased 
ways. From the perspective of individual cognition, the placebo effect (the expecta-
tion that a treatment will be efficacious increases its therapeutic effect; Kaptchuk & 
Miller, 2015) and “regression to the mean” (illness symptoms will get better regard-
less of the application of the treatment; Barnett et  al., 2005; Linden,  2013) often 
lead to erroneous causal inferences regarding the genuine efficacy of medical treat-
ments. From the perspective of cultural transmission, since the efficacy information 
of many medical treatments is culturally obtained, transmission biases such as pres-
tige bias (Henrich & Gil-White, 2001) and conformist bias (Henrich & Boyd, 1998) 
may favor a treatment that is practiced by prestigious individuals or is already preva-
lent in the population for non-efficacy-related reasons. Additionally, psychological 
and social factors such as the under-reporting of negative evidence (de Barra, 2017; 
de Barra et al., 2014) may bias the transmission process and lead to an overestima-
tion of the efficacy of these treatments (Hong, 2022a; Hong & Henrich, 2021; Hong, 
Slingerland & Henrich, 2023).

It is important to note that these are not exclusive explanations (Miton et  al., 
2015), and they are often used to answer different types of questions. For example, 
intuitive plausibility explanations help us understand why medical practices with 
certain features are preferred rather than others, whereas explanations that invoke 

1  Of course, the placebo effect itself may serve as a potent factor that sustains many ineffective (by 
modern standards) traditional medical practices. See Hong (2021) for a detailed examination of the role 
of the placebo effect in the cultural evolution of medical technology.
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contextual factors (transmission biases, social factors such as under-reporting of 
negative evidence) may help elucidate population-level mechanisms that sustain 
ineffective practices once they already exist in the population. A complete under-
standing of the ineffective medical practices is surely going to include most, if not 
all, of the above cognitive, psychological, and social factors.

So far, the mechanisms via which ineffective technologies can be maintained in 
the population are domain general and apply to any instrumental practices. However, 
medical treatments differ from many other practices in that their effects are often not 
immediately observed. In other words, it often takes some time for the treatment 
to take observable effect. In the causal cognition literature, temporal contiguity is 
an important aspect of human causal attribution (Shanks et  al., 1989; Vallée-Tou-
rangeau et al., 2005), especially when individuals have no strong theoretical reason 
to expect a delay in the observing causal effects (Buehner & May, 2003; Le Pelley 
et al., 2017). As such, treatments that take too long to come into effect may not be 
viewed as the cause of the recovery. Another characteristic of medical treatments is 
that more than one treatment may be attempted if the patient does not recover from 
the illness in time. In modern medical settings, for example, many people are willing 
to try alternative medicine and healing methods when conventional treatment fails 
(Kantor, 2009; Vohra et al., 2005). My own fieldwork in southwest China among the 
Nuosu also reveals that many individuals who engaged in traditional healing prac-
tices did so after receiving standard treatment in local hospitals but failed to observe 
any improvement (Hong, 2022b).2 This means that if people observe illness recov-
ery, they are much more likely to attribute it to the second treatment (traditional 
healing) than the first treatment (modern medicine). In fact, field interviews show 
that people frequently emphasize the empirical success of traditional healing prac-
tices and would only acknowledge that they first went to the hospital when probed 
specifically by the interviewer.

An important consequence of this type of causal inference based on temporal 
proximity is that the first attempted treatment suffers a disadvantage regarding its 
perceived efficacy because, when both treatments are applied, the one that is tem-
porally closer to the recovery (even if ineffective) gets the credit. This creates an 
interesting negative feedback loop wherein an ineffective treatment and a genuinely 
effective treatment may coexist: the genuinely effective treatment may be perceived 
as more efficacious for a variety of reasons, yet precisely because it is perceived as 
more efficacious, people attempt it first, and as a result, the eventual recovery may 
often be attributed to the ineffective treatment that is attempted later. In other words, 
when a medical treatment is genuinely effective but takes some time for the effect 
to occur, an inferior treatment may be erroneously inferred as effective when people 
are not sufficiently patient.

2  Granted, it is possible that some of these traditional healing practices do have some genuine therapeu-
tic effect. The point here is that the treatment that is tried second usually gets the credit, no matter the 
efficacy.
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Analytical Model

Here, I use a formal modeling approach to examine this possibility closely. Specifi-
cally, I assume that individuals can psychologically entertain multiple treatment var-
iants and investigate the general phenomenon where a superior technology and an 
inferior technology may coexist in the population because of sequential treatments 
and causal attribution based on temporal contiguity. As such, the puzzle of the reten-
tion of ineffective medical treatments will be a special case of this general model 
where the therapeutic effect of the inferior treatment is the same as or worse than 
chance recovery. In other words, although in the model all treatments are technically 
“effective” (the only difference being some are fast-acting and others slow-acting), 
genuinely ineffective treatment could be viewed as a treatment with recovery time 
the same as spontaneous/natural recovery, and as such the analyses below focus on 
the type of illness that will recover naturally; in other words, the patient’s health 
will eventually be restored regardless of the treatment intervention applied. In such 
a setting, a superior treatment would be one that significantly speeds up the recovery 
process; an inferior treatment would be one that only marginally increases the recov-
ery process; and a genuinely ineffective treatment would be one that does not affect 
the natural recovery timing (or perhaps even lengthens it). In the following sections, 
“ineffective” and “inferior” will be used interchangeably since the overall question 
to be addressed remains the same—the investigation of the conditions and mecha-
nisms under which better treatments do not outcompete worse ones.

To do so, I first present an analytic formulation of the basic dynamics and equilibria 
of the frequency of cultural variants and then use agent-based simulation to explore 
frequency changes of various types of individuals in more realistic settings. In particu-
lar, I look at whether one treatment variant may reach fixation or be genuinely “lost” in 
the population. Since this model explicitly focuses on the temporal dimension of the 
effect of medical treatments, treatment efficacy is defined as the time it takes for some 
medical treatment to take effect. Therefore, superior treatments refer to treatments that 
take effect quickly after being applied. I assume that the time it takes for an effect to 
occur follows some distribution (hereafter referred to as “effect timing distribution”). In 
the epidemiological literature, a number of distributions have been proposed (Krylova 
& Earn, 2013; Lloyd, 2001), and for the sake of mathematical convenience a normal 
distribution is used throughout this paper,3 meaning that when a treatment is applied to 
cure some illness, the time it takes for the effect to occur is a normal random variable 
with parameters µ and σ. Further, I assume that individuals have a “patience threshold” 
denoted by s , which refers to the amount of time an individual is willing to wait before 
switching to a different treatment. Causal attribution is entirely dependent on relative 
temporal contiguity: that is, individuals will attribute the recovery to the treatment 
whose timing of application is temporally closer to the recovery (hereafter “treatment 
effect,” “effect,” and “recovery” will be used interchangeably).

3  The choice of normal distribution here also has some empirical support: for example, the recovery 
time for COVID-19 roughly follows a normal distribution with a mean of 18 days and standard deviation 
of 13 days (Liu et al., 2021; also personal communication with Liu in October 2021).
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Figure  1 provides a graphical illustration of the probability density function of 
effect timing of two treatments with different means but the same standard deviation 
and patience threshold. From an individual’s perspective, Fig. 1 can be viewed as the 
probability of recovery at a particular time after taking treatment 1 (hereafter T1) or 
treatment 2 (hereafter T2). From a population perspective, the integral between two 
time points can also be viewed as the expected proportion of individuals who take T1 
or T2 and recover within that time period. In this figure, a patience threshold s = 8 is 
denoted by the black dashed line, and the area under the curve to the right of s = 8 
and the two probability density functions thus can represent the proportion of people 
who attempt T1 or T2 but do not observe a treatment effect within s time (orange-blue-
ish for T1, orange for T2). In this example, while most individuals who apply T1 will 
observe a treatment effect within s, a relatively small proportion of people who apply 
T2 will observe a treatment effect within s since the mean recovery time for T1 (µ1 = 5) 
is shorter than that for T2 (µ2 = 10).

Analytic Formulations of Population Dynamics

Assuming there are two treatment variants in the population, the cumulative density 
function of the effect timing distribution must be computed in order to model the pop-
ulation dynamics of treatment frequency change. Recall that the cumulative density 
function for the standard normal distribution ϕ(x) is

Where erf denotes the error function (Levi, 2019) and ϕ(x) is the probability that 
the random variable takes a value less than or equal to x. In our medical treatment 

(1)ϕ(x) = P(Z ≤ x) =
1

2

�
1 + erf

�
x−μ

σ

√
2

��

Fig. 1   A graphical example of the probability density functions of two normal distributions representing 
the proportion of people who try the first treatment (blue for T1, orange for T2) and do not observe effect 
within s time (denoted by the black dashed line), thus attempting the other treatment. Shading represents 
the amount of proportion of people who attempt T1 or T2 but do not observe a treatment effect within s 
time (orange-blueish for T1, orange for T2). Parameter values: μ1 = 5, σ1 = 2, μ2 = 10, σ2 = 2, s = 8  
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setting, ϕ(x) thus represents the proportion of individuals who apply a treatment and 
recover within x time.4

More generally and conveniently, the cumulative density function of any normal 
distribution with parameters µ and σ may be denoted as ϕ

(
s−μ

σ

)
 . Let the proportion 

of individuals who try T1 first be p and the mean and standard deviation of T1’s 
effect timing distribution be µ1 and σ1, respectively; we can now formally represent 
the proportion of individuals who observe the effect of T1 within time s as

Similarly, the proportion of individuals who try T2 first and observe its effect 
within time s can be represented as

The next step is to model the transmission of T1 and T2 over generations. The 
rich literature in cultural evolution has both theoretically and empirically examined 
the transmission rules of cultural variants (Boyd & Richerson, 1985; Kendal et al., 
2009; Muthukrishna et al., 2016; Vale et al., 2017). Note that our medical treatment 
case is different in that when individuals adopt a treatment, they will attempt that 
treatment first and will resort to the other treatment when the first treatment takes 
too long to take effect. In other words, even when people “adopt” one treatment, 
they will still be aware of the alternative treatment. In later sections I will deal with 
the possibility that individuals may not even be aware of the existence of alternative 
treatments.

Here we examine two possible transmission rules. For the first type, naive indi-
viduals may adopt a treatment to use initially based on its perceived efficacy in the 
parental generation. Specifically, a naive focal individual may sample a number of 
models, “ask” each model which treatment they think is effective, and then make an 
adoption decision based on the relative proportion of models who reported either T1 
or T2. In the rest of the paper, this transmission rule will be termed “belief-based 
copying,” which bears some resemblance to payoff-biased transmission in the cul-
tural evolution literature (Kendal et al., 2009). In the simplest case, the proportion of 
individuals in the offspring generation trying T1/T2 first would be the same as the 
proportion of individuals in the parental generation who believe that T1/T2 is effec-
tive. This type of transmission is reminiscent of the “proportional imitation” in eco-
nomics (Schlag, 1998) and cultural evolution (Baldini, 2012), although in this case 
the payoffs of T1 and T2 cannot be directly evaluated and are inferred from the rela-
tive proportion of individuals who causally attribute their recovery to T1/T2. With 

p ⋅ ϕ

(
s − μ

1

σ
1

)

(1 − p) ⋅ ϕ

(
s − μ

2

σ
2

)

4  This is in fact an approximation since ϕ(x) also includes the area where x has negative values, and 
time obviously cannot be negative. However, this area is usually quite small and therefore does not quali-
tatively change the result of the subsequent analysis.
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the above notation scheme, the proportion of individuals in the original (parental) 
generation who attribute their recovery to T1 is thus

where p ⋅ ϕ
(

s−μ1

σ1

)
 represents the proportion of individuals who attempt T1 first and 

recover within s time, and (1 − p) ⋅

(
1 − ϕ

(
s−μ2

σ2

))
 represents the proportion of indi-

viduals who attempt T2 first yet do not recover within s time, and then try T1 and 
attribute the eventual recovery to T1. Because all individuals eventually attribute 
their recovery to either T1 or T2, to find the equilibrium expression of the propor-
tion of individuals who attribute their recovery to T1 (hereafter called “T1 individu-
als”), simply set p = pT1effective and solve for p (denoted by p∗ below):

where ϕ
1
= ϕ

(
s−μ1

σ1

)
 and ϕ

2
= ϕ

(
s−μ2

σ2

)
 . Equation (3) shows that p∗ strictly increases 

with ϕ
1
 and decreases with ϕ

2
 , meaning that the proportion of individuals who think 

T1 is effective increases with the cumulative density function of the effect timing 
distribution of T1 and decreases with that of T2. In other words, this analytic result 
reassures us that there are more T1 individuals at equilibrium when T1 is more 
effective ( μ

1
 < μ

2
 ). To provide some concrete intuitions, I numerically solved for p∗ 

as shown in the Fig. 2, assuming the effect timing distributions of both treatments 
have the same σ . As expected, the proportion of individuals adopting T1 first at 
equilibrium always increases with the mean effect timing of the inferior treatment 
( μ

2
 ), meaning that the longer it takes for T2 to take effect, the higher the T1 propor-

tion at equilibrium is. The reader, however, may note that such change in p∗ is very 
slight (barely visible in the graph) when s and σ is small ( s = 2 , σ = 1 ). This is 
because when individuals are very impatient and the effect of both treatments occurs 
in a very narrow time window, close to none of the individuals will experience a 
recovery within their patience threshold for the first attempted treatment and will 
therefore try the other treatment. As a result, they will attribute the later recovery to 
the second attempted treatment, and hence the mean timing of recovery does not 
matter very much. On the other hand, when s is large and σ is small, T1 individuals 
(those who would attempt T1 first) approach fixation. The reason here is that while 
the narrow effect timing window of T1 in this case largely falls within individuals’ 
patience threshold, the effect timing window of the inferior treatment variant T2 
does not, meaning that many individuals who attempt T1 first would experience 
recovery within s , while only a small proportion of individuals who attempt T2 first 
recover within s . Over time, T1’s advantage makes it the dominant treatment in the 
population.

One other transmission possibility is when the probability of a naive individual 
adopting T1 or T2 to use first depends on their usage frequency in the parental gen-
eration. In this case, a naive individual samples a number of models, looks at what 
treatments these models attempted in the past, and then makes an adoption decision 

(2)p T1effective = p ⋅ ϕ

(
s−μ1

σ1

)
+ (1 − p) ⋅

(
1 − ϕ

(
s−μ2

σ2

))

(3)p∗ =
1−ϕ2

2−ϕ1−ϕ2
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based on the relative proportion of observed attempts. Conformist transmission, a type 
of transmission often discussed in the cultural evolution literature, can be thus viewed 
as a special case of frequency-dependent transmission when the probability of adopt-
ing the modal variant is greater than its relative frequency in the population (Henrich 
& Boyd, 1998). Because in the present setup a model may have up to two actions, this 
type of transmission will be called action-based copying to avoid terminological confu-
sion, though “conformity” will still be used and will be defined more precisely later.

In my model, with the same notation scheme as above, the total use of T1 in the 
population is

where p represents the proportion of individuals who attempt T1 first, and 
(1 − p) ⋅

(
1 − ϕ

(
s−μ2

σ2

))
 represents the proportion of individuals who attempt T2 

(4)p
total T1 use

= p + (1 − p) ⋅

(
1 − ϕ

(
s−μ2

σ2

))

Fig. 2  The equilibrium proportion p* (proportion of individuals who attribute their recovery to T1) 
under various parameter combinations when transmission is belief-based copying. μ1, μ2, and σ denote 
the mean and standard deviation of recovery time for T1 and T2 respectively (note both treatments have 
the same variance). μ1 = 5 for all conditions. s denotes individuals’ patience threshold

71Human Nature  (2023) 34:64–87

1 3



first, do not observe an effect within s , and then attempt T1. Similarly, the total use 
of T2 is

In the next generation, the proportion of individuals who adopt T1 to use first is 
thus5

where D is the conformist bias parameter and is positive when 
p
total T1 use

>
p total T1 use+p total T2 use

2
 and negative when p

total T1 use
<

p total T1 use+p total T2 use

2
 . 

Here, conformist bias increases as the absolute value of D increases. Technically 
speaking, in order for p

total T1use+D

p
totalT1use+ptotalT2use

 to be properly bounded between 0 and 1, D 
needs to fall within the range −p

total T1 use
< D < p

total T2 use
 . In the following analysis 

we assume the magnitude of D is small and does not go out of bounds (in a later 
analysis, transmission with conformity will be explored with an agent-based simula-
tion). To find equilibria, again, set

Solving for p (denoted by p∗� ), we have two possibilities here. When ϕ
1
= ϕ

2
 , we 

have the special case where T1 and T2 are completely identical with regard to their 
effect timing distribution. Assuming D > 0 , we have

Because of the existence of biasing parameter D , whose sign depends on the 
initial population composition, p

ini
 is used to represent the initial (ini) population 

proportion of T1 individuals. In the trivial case of D = 0 (no conformist bias), the 
equilibrium value p∗� is always 0.5, meaning the percentage of individuals who will 
attempt T1 or T2 first tends to be the same (50%) in the long run. This makes intui-
tive sense since, when there are no biasing factors favoring either treatment variant, 
the long-term equilibrium proportion of individuals who possess either treatment 
depends on the observed frequency of these treatments being used in the population, 
which is ultimately determined by their effectiveness (determined by μ and σ).

(5)p
total T2 use

= (1 − p) + p ⋅

(
1 − ϕ

(
s−μ1

σ1

))

p
total T1 use

+ D

p
total T1 use

+ p
total T2 use

(6)p =
p total T1 use+D

p total T1 use+p total T2 use

(7)p∗�

⎧
⎪⎪⎨⎪⎪⎩

D+ϕ1−1

2(1−ϕ1)

���� when p
ini

> 0.5

−D+ϕ1−1

2(1−ϕ1)

���� when p
ini

< 0.5

0.5 when p
ini

= 0.5

5  In the literature, conformity has been modeled in a few different ways. Here I utilize the classic for-
mulation by modeling conformity as an additive constant (Boyd & Richerson,  1985:208; Henrich & 
Boyd, 1998).
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When ϕ
1
≠ ϕ

2
 , solve for p∗� and we similarly have three solutions (assuming 

D > 0)

As we can see, here p∗� depends on the initial proportion of individuals who 
attempt T1 first, p

ini
 , as the value of D changes depending on which treatment is the 

most common in the population. Note that because p∗�represents a proportion, its 
sensible values are bounded between 0 and 1 (inclusive).

Again, I numerically solved equilibrium values p∗� under a few parameter com-
binations, and the results are shown in Fig. 3. Overall, we observe the same general 
trend as belief-based copying: the less effective (larger μ

2
 ) the alternative treatment 

is, the more individuals end up adopting T1 at equilibria states, and this effect is 
more pronounced when people’s patience threshold (s) is large and the spread of 
the effect timing distribution (σ) is small. Similar to belief-based copying, when 
individuals are very impatient ( s = 2 ), especially when D = 0, the equilibrium fre-
quency of T1 barely deviates from 0.5. This is because impatience will increase the 
chances that an individual tries the alternative treatment regardless of what their first 
attempt was. Although an individual will attribute recovery to the second attempted 
treatment, the fact that the individual tried both treatments exactly once means that 
an observer who focuses on behavior will be equally likely to observe either treat-
ment being used. Again, a small σ means that the timing of recovery is concen-
trated within a narrow range, and if s is sufficiently close to μ1, individuals are more 

(8)p∗
�

=

⎧⎪⎨⎪⎩

−ϕ2−

√
D⋅ϕ1+D⋅𝜙2+ϕ1⋅ϕ2−ϕ1−ϕ2+1+1

ϕ1−ϕ2

��when p
ini

> 0.5

−ϕ2−

√
−D⋅ϕ1−D⋅ϕ2+ϕ1⋅ϕ2−ϕ1−ϕ2+1+1

ϕ1−ϕ2

��when p
ini

< 0.5

0.5 when p
ini

= 0.5

Fig. 3  The equilibrium proportion p*′ (proportion of individuals who attribute their recovery to T1) 
under various parameter combinations when the mode of transmission is action-based copying. D 
denotes the magnitude of conformist bias, μ1, μ2, and σ denote the mean and standard deviation of recov-
ery time for T1 and T2 respectively (note both treatments have the same variance). μ1 = 5 for all condi-
tions. s denotes individuals’ patience threshold
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likely to observe the effect of the first treatment and thus will not try the alternative 
treatment.

When there is conformist bias ( D = 0.2 ), the initial frequency of T1 matters, as 
we observe fixation in the top right panel of Fig. 3, when s is large and σ is small. 
As discussed above, this particular parameter combination magnifies the differ-
ence between superior and inferior treatments, and we see that except in the two 
conditions where the pini is small (pini = 0.1) and the efficacy difference of the two 
treatments is small (µ2 = 5 and µ2 = 6, vs. µ1 = 5), fixation of T1 is always reached. 
When σ is large, however, individuals who would attempt T1 first and T2 first coex-
ist in substantial proportions. This result contrasts with the standard “one-locus 
two-allele” cultural evolutionary models in which fixation is guaranteed under 
conformist transmission (except the unstable equilibrium of (pini = 0.5) (Boyd & 
Richerson, 1985). In my model, the conformist push toward fixation is countered by 
individuals’ impatience and their trying the alternative treatment when the first treat-
ment does not yield an observable effect within time s.

Agent‑Based Model

So far, I have made the rather unrealistic assumption that all individuals in the popu-
lation are aware of the existence of both treatments and will try one before the other, 
attempting the second only when the first does not improve outcomes within the 
patience threshold. This may be applicable to a scenario in which individuals are 
extremely well-connected with sufficient information flow. Contemporary modern 
societies, in some respects, have features of this scenario: traditional mass media, 
such as television and newspapers, can quickly and efficiently disseminates infor-
mation at little cost, and the growing influence of social media greatly expands our 
informational network. Thus, one can be aware of the existence of alternative treat-
ments without themselves, their relatives or close friends having any direct experi-
ence of it. However, this type of situation is rather novel (Henrich, 2020) and may be 
quite different from our evolutionary past (Boyette & Hewlett, 2018; Garfield et al., 
2016; Henrich & Broesch, 2011; Lew-Levy et al., 2017). Therefore, I construct an 
agent-based simulation in which agents may not be aware of an alternative treatment 
to examine the possibility of genuine treatment fixation and extinction.

Brief Model Description

Each agent is represented as a list [Tfirst, Tsecond], where Tfirst denotes the treatment 
variant that an agent will attempt first, and Tsecond denotes the second treatment vari-
ant that the agent has in mind and will attempt if the first attempted treatment does 
not yield an observable effect within the patience threshold. Note that in addition 
to the two treatment variants T1 and T2 in the population, Tsecond can also take the 
value none, meaning that the agent is not aware of the existence of the alternative 
treatment and will not attempt anything even if the first treatment fails to produce an 
effect within the patience threshold.
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The initial generation consists of N agents, and each agent performs an action 
Tfirst and obtains an effect timing e, which follows the effect timing distribution of 
either T1 or T2 with the respective mean and variance parameters. If e < s (mean-
ing the effect occurred within its patience threshold), the agent will not perform 
further actions and will attribute the effect to its Tfirst; otherwise it would attempt 
its Tsecond (if it is not none) and attribute the eventual recovery to its Tsecond. If its 
Tsecond is none, then it would not attempt anything and would attribute its eventual 
recovery to its Tfirst instead. Note that this means when an individual’s Tsecond is 
none, it will always attribute its recovery to its Tfirst regardless of whether this 
recovery occurred within its patience threshold.

The next generation consists of the same number (N) of naive agents, and each 
naive agent samples and learns from n cultural models in the parental generation 
(see Table  1 for the meaning of all parameters used in the model). In the case 
of belief-based copying, there are three possibilities regarding an agent’s model 
composition (causal attributions of the n models) and four possible treatment 
adoption types:

1. for all T1 attributions and no T2 attributions: the agent will be of the type [T1, 
none].

2. for all T2 attributions but no T1 attributions: the agent will be of the type [T2, 
none].

3. for both T1 and T2 attributions: the agent will be of the type [T1, T2] or [T2, T1], 
with probability relative to the proportion of the T1 and T2 attributions in the 
sampled models. For example, if there are 4 T1 attributions and 6 T2 attributions, 
the agent will be [T1, T2] with probability 0.4 and [T2, T1] with probability 0.6.

Table 1  Notations of parameters used in the analytic model and agent-based simulation

Notation Meaning

Tfirst The treatment that the focal individual attempts first
Tsecond The treatment that the focal individual attempts second if 

the first attempt treatment fails to yield observable effect 
in time

T1 Treatment 1
T2 Treatment 2
s Patience threshold
e Actual time that it takes for a treatment to come into effect
N Population size
n Number of models sampled by the focal naive individual
OAT1 Total observed T1 actions
OAT2 Total observed T2 actions
D Conformist bias parameter
μ1, μ2 Mean of effect timing of T1 and T2
σ1

2, σ2
2 Variance of effect timing of T1 and T2
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In the case of action-based copying, treatment adoption works similarly to the 
above possibilities, with the difference being that the n cultural models are not 
agents from the previous generation but rather “actions” observed in the previ-
ous generation. That is, agents learn from the observed attempts of trying T1 or 
T2 instead of from only the treatments to which the sampled models eventually 
attribute recovery. So, unlike belief-based copying, for which each model can 
only pass down one treatment, for action-based copying, each model can pass 
down one or two actions, depending on the number of treatments they attempt. 
The conformist bias factor in the agent-based simulation contributes to the treat-
ment adoption decision in the following way: if we denote the total number of 
observed actions of T1 and T2 as OAT1 and OAT2, respectively, and assume D > 0 
(note that D here modifies the treatment adoption probability of the individual 
rather than the treatment frequencies in the population), we have

After all naive agents’ types are determined, they become the parental genera-
tion and the cycle continues. To ensure convergence, all simulations are run until 
the calculated equilibrium frequency of different types of agents does not fluctu-
ate past 0.1% for 10 consecutive generations. In all simulation runs, the initial 
population consists of equal proportion (50% each) of [T1, T2] [T2, T1] individu-
als. This initial setup gives both treatments the best chance to spread (all agents 
have both treatments in mind) and thus allows us to examine the possibility of 
treatment fixation and extinction fully.

Results for Belief‑Based Copying

The simulation results of belief-based copying are shown in Fig. 4. Immediately, we 
see that the magnitude of s plays a significant role in the equilibrium frequencies of 
different types of individuals. Specifically, when s is small (i.e., when agents are so 
impatient relative to the mean effect times that the timing of recovery does not mat-
ter),6 the relative frequencies of agent types do not change with the increasing differ-
ence between μ

1
 and μ

2
 . When the number of sampled models ( n ) is small ( n = 3 ), 

random sampling (drift) causes a substantial proportion of individuals to only expe-
rience one treatment variant. As we see in the case of s = 2 , roughly a quarter of the 

Pr(T1 adopted) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

OA
T1+D

OA
T1
+OA

T2

�when OA
T1

> OA
T2

OA
T1−D

OA
T1
+OA

T2

�when OA
T1

< OA
T2

OA
T1

OA
T1
+OA

T2

�when OA
T1

= OA
T2

6 Throughout the paper, s is assumed to be fixed (i.e., all individuals in the population have the same 
patience threshold). A potentially interesting scenario to examine is what happens when s is allowed to 
vary among individuals and has a large variance. Presumably, a large variance in s means there will be a 
mix of very patient and impatient individuals, and the most impatient ones may still prevent the fixation 
of the more effective (fast-acting) treatment. Future work may examine such dynamics more directly.
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population are not aware of the existence of an alternative treatment, and as a result 
all four types of agents stably coexist in the population. When n is reasonably large 
( n = 7 ), on the other hand, there is roughly a 50–50 split between [T1, T2] and [T2, 
T1] types of individuals.

Corroborating previous analytic results, Fig. 4 shows that a large s leads to fixa-
tion of the superior treatment variant rather easily. In the case of s = 7 , for example, 
when T1 is only slightly better than T2 ( μ

1
= 5 compared with μ

2
= 6 ), [T1, none] 

reaches fixation when n = 3 and near fixation when n = 7 . When s is of intermedi-
ate magnitude and n is large ( s = 5 , n = 7 ), we see the stable coexistence of three 
types of agents (ordered by their equilibrium proportion in the population): [T1,T2], 
[T2,T1], and [T1, none], suggesting that although agents who would attempt either 
T1 or T2 first while entertaining the possibility of the other treatment exist in the 
population, a small proportion of individuals ([T1, none]) is no longer aware of infe-
rior treatment T2, and this proportion increases with the increasing difference in the 
mean recovery time of the two treatments up to a point. In the s = 5 , n = 7 condi-
tion, for example, the frequency of [T1, none] barely changes above μ

2
= 7 ; cor-

respondingly, [T2, T1] individuals decrease up to the same point. This means that 
at a particular patience threshold the disadvantage of the inferior treatment in the 
transmission process has an upper limit: in the above parameter combination ( s = 5 , 
n = 7 , μ

1
= 5 ), whether the alternative treatment takes an average of 7 time units or 

9 time units to take effect does not matter—in either case the inferior treatment will 
exist in the population at the same low frequency.

Results for Action‑Based Copying

The simulation results of action-based copying are shown in Fig.  5. There are 
a few points worth noting here. First, action-based copying with no conformity 
( D = 0 ) leads to no fixation of treatment variants under the current parameter 

Fig. 4  Equilibrium frequencies of different types of individuals under belief-based copying. Error bars 
represent 95% confidence interval from 200 independent simulation runs. μ1, μ2 and σ2 denote the mean 
and variance of recovery time for T1 and T2, respectively (note both treatments have the same variance), 
and s denotes individuals’ patience threshold. Other parameter values: σ1 = σ2 = 1, N = 500, μ1 = 5 for 
all conditions
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settings, though one may expect [T1, none] to reach near fixation when μ
2
 gets 

sufficiently large in the condition of s = 7 , n = 3 . In the classic cultural evolution 
literature, unbiased frequency-dependent transmission does not change the rela-
tive frequency of cultural variants under certain conditions (e.g., infinite popula-
tion size; Boyd & Richerson, 1985), similar to the Hardy-Weinberg equilibrium 
in population genetics (Meirmans, 2018). Our model is different, however, in that 
the units are not agents but rather actions in the previous generation since one 
agent can potentially have two actions, and whether the second treatment is used 
depends on the effect timing of the first treatment. Therefore, equilibrium values 
of different types of agents are uniquely determined by the effect timing distribu-
tion parameters μ , σ , and the agent’s patience parameter s , as well as number of 
sampled actions n . Regarding fixation of the superior treatment variant (T1), as 
long as some T1 attempts are not followed by timely recovery, T2 actions will 
exist in the population that will be sampled by the naive generation. In our model 
setup, one alternative treatment action sampled is sufficient for the agent to be 
aware of its existence, which is why an increased number of sampled actions n 
greatly increases the equilibrium proportion of [T2, T1] agents.

Action-based copying with conformity, on the other hand, does lead to genuine 
fixation when the patience threshold is large ( s = 7 ), especially in cases where n is 
small. Because the initial population composition is set to be of equal proportion 
of [T1, T2] and [T2, T1] individuals, all fixations occur with [T1, none] reaching 
100% in the population. That is, no agent in the population is aware of the exist-
ence of T2 anymore and thus will not attempt it even if T1 doesn’t yield observ-
able effect within s . The magnitude of D primarily matters when there are more 
model actions sampled; not surprisingly, a larger D makes fixation more likely. In 
fact, when T1 and T2 are identical regarding their effect distribution ( μ

1
= μ

2
= 5 ), 

the population reaches fixation either in the form of [T1, none] or [T2, none] with 
roughly equal chance, which is why we observe rather large error bars.

Fig. 5  Equilibrium frequencies of different types of individuals under belief-based copying. Error bars 
represent 95% confidence interval from 200 independent simulation runs. D denotes the magnitude of 
conformist bias, μ1, μ2 denote the mean recovery time for T1 and T2, respectively (note both treatments 
have the same variance), and s denotes individuals’ patience threshold. Other parameter values: σ1 = σ2 
= 1, N = 500, μ1 = 5 for all conditions
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The fixation pattern under action-based copying with conformity for other param-
eter values is qualitatively similar to that under belief-based copying, though its 
parameter requirement is more stringent: for example, we observe no fixation under 
the intermediate patience threshold value ( s = 5 ). This suggests that the magnitude 
of s matters more when the superior treatment variant reaches fixation due to con-
formity. When the patience threshold s is not sufficiently large, a significant pro-
portion of individuals will attempt both treatments due to impatience, which sus-
tains substantial amount of both T1 and T2 in the pool of actions. As can be seen in 
Fig. 5, in conditions of s = 5 , the relative proportion of different types of individuals 
does not change much with D or μ

2
 , indicating that the patience threshold s (relative 

to the magnitude of μ
1
 and μ

2
 ) is the real limiting factor here.

Discussion

In this paper, I pose the puzzle of ineffective medical treatments and formally model 
a hitherto ignored aspect of technological practice in the cultural evolution litera-
ture: when a problem has multiple potential solutions and people are aware of them, 
they rarely stick to one solution blindly. Rather, people readily turn to alternative 
solutions when one solution fails to solve a problem. This aspect of psychology 
interacts with the fact that many medical treatments do not yield immediate, observ-
able outcomes, and hence, it is difficult to distinguish an ineffective treatment from 
a slow-acting one. The result is that people try one treatment after another. Such 
sequential applications of different treatments present unique challenges to adaptive 
cultural evolution since inferior medical treatments may stably coexist with superior 
treatments due to erroneous causal attribution based on temporal contiguity. In a 
sense, inferior (slower-acting) treatments can “hitchhike” (for a general introduction 
to the concept of hitchhiking in evolutionary biology, see Barton, 2000) upon the 
therapeutic effect of superior (faster-acting) treatments. This may hold true for inef-
fective treatments as well.

How Does the Inferior/Slower‑Acting Treatment Persist?

If we take the superior treatment variant to be a genuinely effective medical treat-
ment and the inferior treatment variant to be an ineffective treatment where the prob-
ability of recovery is no different from chance, then my model describes an impor-
tant factor that contributes to the persistence of ineffective treatments: the natural 
variation in the timing of recovery and individuals’ limited patience make a propor-
tion of the population turn to the ineffective treatment, and these individuals then 
attribute their eventual recovery to the temporally closer but ineffective treatment, 
rather than the genuinely effective treatment. Anthropologically, although the pub-
lished literature usually focuses on healing practices with explicit supernatural com-
ponents (thus the puzzle of “ineffective treatments”), the reality is that more natu-
ralistic treatments such as herbal remedies which likely have real therapeutic effects 
often coexist with supernatural, ineffective treatments (Montagu, 1946; Murdock 
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et al., 1980; Pan et al., 2014). In fact, much effort has been devoted to scientifically 
validating the genuine therapeutic effect of traditional medical practices (Firenzuoli 
& Gori, 2007; Saad et al., 2006; Taylor et al., 2001; Yuan et al., 2016). Most nota-
bly, the 2015 Nobel Prize in physiology or medicine was awarded to Tu Youyou for 
her discovery of an effective malaria treatment, artemisinin, which was recovered 
from an ancient medicine recipe book by alchemist/healer Ge Hong (283–343 CE) 
during the Jin Dynasty (Miller & Su, 2011).

Previously, Tanaka et al. (2009) modeled a social dynamic in which ineffective 
medical treatments may spread because their ineffectiveness results in longer and 
more salient demonstrations than effective treatments. My model here thus comple-
ments this line of research which focuses on the information transmission dynamics 
that contribute to the persistence of ineffective treatments. The relative importance 
of this factor will surely depend on cultural context; as I have already alluded to, 
societies with sufficient information flow, such as ours, are, paradoxically, particu-
larly vulnerable to the inferential problem presented by sequential treatment. Yet, 
modern societies have reliable epistemic institutions (research agencies, universi-
ties, etc.) that generate genuine knowledge using scientifically valid methods (e.g., 
randomized controlled trials; Hong & Henrich, 2021). I suggest that the sequential 
treatment factor probably plays a larger role in many small-scale societies that are 
increasingly influenced by the spread of modern medical theories and the availabil-
ity of modern medical facilities: on the one hand, the actual therapeutic efficacy of 
modern medical practices in these places may not be very high because doctors may 
be poorly trained (misdiagnosis can happen); on the other hand, modern medical 
treatments are often viewed as alien and, when accompanied by colonialism, gener-
ally trigger some level of suspicion and distrust (Abdullahi, 2011). Since traditional 
medicine often works through placebo, and distrust in modern medicine minimizes 
the placebo effects of modern medicine, it is possible that even if modern medi-
cine is on average more effective, the placebo effects of traditional medicine may 
minimize that difference to the point of being imperceptible. The implication is that 
we should not expect that people will automatically give up their traditional healing 
practices and wholeheartedly endorse modern medical ones, even if they exclusively 
focus on therapeutic outcomes.

When Does the Superior/Faster‑Acting Treatment Evolve to Fixation?

The logic of natural selection dictates that the frequency of the variant with higher 
fitness will increase in the population. In genetics, we can precisely calculate the 
probability of fixation under various conditions (Hartl & Clark, 1997), but the 
general expectation is that the variant with higher fitness will reach fixation in the 
long run if we consider natural selection as the main evolutionary force. Cultural 
evolutionary theory, on the other hand, also generally expects the variant that con-
fers higher fitness benefits to increase in frequency, and it does so via a number of 
transmission mechanisms that are quite different from genetic ones (Boyd & Rich-
erson, 1985; Henrich, 2016). Conformist transmission, for example, can often lead 
to fixation of the more common cultural variant, and when it is combined with other 
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evolutionary forces that favor the variant with higher fitness (Henrich & Boyd, 1998; 
Nakahashi et al., 2012, Hong, 2022b), adaptive evolution will occur in the form of 
the variant with higher fitness reaching fixation.

My model, however, shows that when additional constraints and psychologi-
cal realism (i.e., individuals are able to mentally entertain multiple treatments) are 
included, it may be more difficult for the superior treatment to reach fixation. Under 
both belief-based and action-based based copying, some minimal level of patience is 
needed for the inferior treatment variant to be driven into extinction. Specifically, it 
takes time for different treatment variants to reveal their effect, and when people are 
too impatient, superior treatments cannot sufficiently distinguish themselves from 
inferior ones. Another important factor that affects the possibility of adaptive fixa-
tion is the number of models sampled. Intuitively, if individuals sample a very large 
number of cultural models, they are more likely to experience alternative treatment 
variants and retain these variants in their mind. This makes fixation more difficult—
because regardless of the patience threshold level, there are always going to be indi-
viduals who wait long enough without observing an effect and are willing to try an 
alternative if they have an alternative in mind. Sampling a large number of cultural 
models ensures that individuals in the population are aware of the existence of alter-
native treatments.

Of course, genuine treatment fixation does happen. As discussed above, a small 
number of sampled models and a large patience threshold increases the chances that 
a superior treatment reaches fixation. My model shows that everything being equal, 
fixation of the superior variant occurs more easily under belief-based copying than 
action-based copying. It should be reiterated that these transmission mechanisms are 
defined in rather specific ways in the sequential treatment context and should not 
be confused with payoff-biased transmission and frequency-dependent transmission 
in the cultural evolution literature despite their resemblance. The transmission of 
cultural variant can be modeled in many other ways; for example, individuals could 
track the time between the application of some treatment variant and the recovery 
of others and preferentially adopt the treatment with shorter recovery delay, or they 
could differentiate whether the observed action is the first or second attempt and 
assign more weight to the first attempted action (in the current model all actions 
have the same weight). We could even add more sophistication and allow individu-
als to perform some kind of Bayesian inference by taking into account the existence 
of a patience threshold and/or the number of cultural models sampled. These pos-
sibilities merit further theoretical and empirical investigation, but the general point 
remains that as long as people have a tendency to favor treatments that occur tem-
porally closer to recovery, the complete elimination of the inferior treatment variant 
may be difficult to achieve.

Conclusion

The application of knowledge is very different from the discovery of knowledge. 
In everyday life, people frequently encounter situations with great uncertainty 
and need to make decisions based on incomplete information. In the context of 
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problem-solving, an individual’s immediate concern is to resolve the problem using 
whatever means necessary without being too concerned about whether these instru-
mental means are genuinely effective. Although it has been argued that even chil-
dren exhibit some level of scientific thinking (Gopnik et al., 2001; Koslowski, 1996; 
Sodian et  al., 1991), much developmental work has shown that children’s use of 
experimentation to test a hypothesis is often driven by an “engineering approach” 
to create desirable effects rather than to correctly identify cause and effect (Kuhn 
& Phelps, 1982; Schauble, 1990; Schauble et al., 1991; Tschirgi, 1980). Relatedly, 
my own fieldwork among the Nuosu in southwest China shows that many people 
readily acknowledge that they are not certain about whether their illness is caused 
by ghosts/spirits, imbalance of bodily elements (yin-yang), or germs/viruses, yet to 
ensure a speedy recovery they are willing to “cover all the bases” and employ mul-
tiple types of treatments either sequentially or simultaneously. In the most extreme 
case, a traditional healing ritual (on the basis that illness is caused by a spirit) may 
be performed inside a hospital as the patient receives modern medical treatment 
(Hong, 2022b). Note that this is not the ideal way to discover which treatment works 
better—a modern statistician is likely to require a large quantity of data and perform 
sophisticated analyses (sometimes referred to as “sequential causal inference” in the 
literature; see Wang & Yin, 2015) to make reasonable inferences.

Granted, people do possess some degree of curiosity and are capable of per-
forming some level of primitive hypothesis testing through active experimentation. 
Medical treatments, however, are uniquely challenging for experimentation for two 
related reasons. First, performing a medical experiment in the modern sense can be 
not only costly but also morally unacceptable because of the high stakes involved 
(sometimes being a matter of life or death). Any sort of treatment vs. control experi-
ment would mean that some individuals are not receiving the best medical care 
given the present state of medical knowledge (Nardini, 2014). Although the epis-
temic merits conferred by randomized, controlled trials (RCTs) are highly valued 
in contemporary, modern societies, RCTs in the modern sense only occurred within 
the past two centuries (Stolberg et al., 2004), and there is no reason to think that they 
were similarly valued in small-scale or historical societies. Second, in the case of 
medical treatments it may be challenging to create the “experimental setup.” Testing 
whether some treatment works on some illness requires generating or identifying 
individuals with the illness, which can be very difficult if not practically impossible, 
especially when its causal mechanisms are not understood and/or the illness occurs 
rarely. In this sense, testing whether certain medical treatments cure some illness 
is rather different from exploring which projectile point design is more effective at 
bringing down prey. As such, “medical experimentation” is typically problematic 
and therefore not done in traditional societies.

From an evolutionary perspective, natural selection shaped the human mind to 
solve various kinds of adaptive problems (Cosmides et al., 1995). As such, our moti-
vation and capability of obtaining truth would only be selected insofar as they confer 
fitness benefits. Therefore, “truth for truth’s sake” may not be a fundamental aspect 
of human nature (Mercier & Sperber, 2017), especially when seeking truth involves 
a cost. In the medical setting, it would be rather silly to avoid a potential life-saving 
treatment simply because doing so makes causal inference easier. Relatedly, this is 
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also why the idea of a “control group” does not quite make sense when the primary 
goal is to maximize the chance of recovery. Instead of active experimentation by the 
individuals themselves, adaptive cultural evolution is more likely to occur through 
social learning wherein individuals observe and learn from those who appear more 
successful or prestigious (Henrich & McElreath, 2003), a process that is more prone 
to errors, biases, and occasional maladaptive cultural practices (Richerson & Boyd, 
2005).

The combination of evolved psychology and cultural dynamics has important 
consequences for our culturally evolved solutions to medical problems. For one 
thing, my model suggests illnesses that appear serious enough yet may spontane-
ously recover within relatively short periods of time present a special inferential 
problem for weeding out treatments that do not affect the timing of natural recovery. 
The symptoms of a common cold, for example, typically last for a few days before 
spontaneous recovery, with few effective treatment options (Wat, 2004). Yet there 
exist many alternative and complementary treatments in the market (Nahas & Balla, 
2011). Relatedly, genuinely effective yet slow-acting drugs may sometimes fail to 
be recognized, as in the case of osteoarthritis (Bruyère et al., 2008; Gumustas et al., 
2017).7 My model also indicates that when one treatment is significantly superior to 
alternatives in speeding up recovery, it is nonetheless likely to reach fixation, espe-
cially with the help of conformity. The rapid acceptance of Western medicine in 
treating eye-related diseases by the Chinese in southern China in the late nineteenth 
century nicely illustrates this point: Western doctors’ surgical treatments yielded 
almost immediate effects and quickly outcompeted traditional Chinese alternatives 
(Hao & Zhu, 2010).

It is worth reiterating that although my model resembles the information trans-
mission dynamics of contemporary social media in some aspects, it most aptly 
applies to small-scale societies with decentralized information flow. Unlike in con-
temporary societies, where there are centrally organized epistemic institutions, indi-
viduals in small-scale societies typically rely on a combination of personal experi-
ence, testimonial information, and observations of others’ actions. As a result, the 
beliefs and technologies they adopt are subject to a different set of biases (Hong & 
Henrich, 2021). In modern societies with competent and reliable epistemic institu-
tions, more effective medical treatments can more easily disseminate in the popula-
tion through lay people’s trust of medical experts and authorities.

To summarize, in this paper I used a formal modeling approach to explore the 
phenomenon of sequential medical treatments in which individuals entertain multi-
ple alternative treatments, trying one first and then attempting another when the first 
treatment fails to produce observable outcomes within a certain period of time. My 
results show that although fixation of the superior/faster-acting variant does happen, 
treatments with different recovery times can coexist under two different transmission 
rules and a wide range of parameter combinations.

7  My fieldwork among the Nuosu suggests that many people believe that it’s of no use to go to the hos-
pital if one has osteoarthritis (风湿).
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